成都创新互联网站制作重庆分公司

Java如何实现高斯模糊和图像的空间卷积

这篇文章主要介绍Java如何实现高斯模糊和图像的空间卷积,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

昌黎网站建设公司创新互联,昌黎网站设计制作,有大型网站制作公司丰富经验。已为昌黎上1000+提供企业网站建设服务。企业网站搭建\成都外贸网站制作要多少钱,请找那个售后服务好的昌黎做网站的公司定做!

高斯模糊

高斯模糊(英语:Gaussian Blur),也叫高斯平滑,是在Adobe Photoshop、GIMP以及Paint.NET等图像处理软件中广泛使用的处理效果,通常用它来减少图像杂讯以及降低细节层次。这种模糊技术生成的图像,其视觉效果就像是经过一个半透明屏幕在观察图像,这与镜头焦外成像效果散景以及普通照明阴影中的效果都明显不同。高斯平滑也用于计算机视觉算法中的预先处理阶段,以增强图像在不同比例大小下的图像效果。 从数学的角度来看,图像的高斯模糊过程就是图像与正态分布做卷积。由于正态分布又叫作高斯分布,所以这项技术就叫作高斯模糊。图像与圆形方框模糊做卷积将会生成更加精确的焦外成像效果。由于高斯函数的傅立叶变换是另外一个高斯函数,所以高斯模糊对于图像来说就是一个低通滤波器。

高斯模糊运用了高斯的正态分布的密度函数,计算图像中每个像素的变换。

Java如何实现高斯模糊和图像的空间卷积

根据一维高斯函数,可以推导得到二维高斯函数:

Java如何实现高斯模糊和图像的空间卷积

Java如何实现高斯模糊和图像的空间卷积

其中r是模糊半径,r^2 = x^2 + y^2,σ是正态分布的标准偏差。在二维空间中,这个公式生成的曲面的等高线是从中心开始呈正态分布的同心圆。分布不为零的像素组成的卷积矩阵与原始图像做变换。每个像素的值都是周围相邻像素值的加权平均。原始像素的值有最大的高斯分布值,所以有最大的权重,相邻像素随着距离原始像素越来越远,其权重也越来越小。这样进行模糊处理比其它的均衡模糊滤波器更高地保留了边缘效果。

其实,在iOS上实现高斯模糊是件很容易的事儿。早在iOS 5.0就有了Core Image的API,而且在CoreImage.framework库中,提供了大量的滤镜实现。

+(UIImage *)coreBlurImage:(UIImage *)image withBlurNumber:(CGFloat)blur 
{ 
  CIContext *context = [CIContext contextWithOptions:nil]; 
  CIImage *inputImage= [CIImage imageWithCGImage:image.CGImage]; 
  //设置filter
  CIFilter *filter = [CIFilter filterWithName:@"CIGaussianBlur"]; 
  [filter setValue:inputImage forKey:kCIInputImageKey]; [filter setValue:@(blur) forKey: @"inputRadius"]; 
  //模糊图片
  CIImage *result=[filter valueForKey:kCIOutputImageKey]; 
  CGImageRef outImage=[context createCGImage:result fromRect:[result extent]];    
  UIImage *blurImage=[UIImage imageWithCGImage:outImage];      
  CGImageRelease(outImage); 
  return blurImage;
}

在Android上实现高斯模糊也可以使用原生的API—–RenderScript,不过需要Android的API是17以上,也就是Android 4.2版本。

/**
   * 使用RenderScript实现高斯模糊的算法
   * @param bitmap
   * @return
   */
public Bitmap blur(Bitmap bitmap){
	//Let's create an empty bitmap with the same size of the bitmap we want to blur
	Bitmap outBitmap = Bitmap.createBitmap(bitmap.getWidth(), bitmap.getHeight(), Bitmap.Config.ARGB_8888);
	//Instantiate a new Renderscript
	RenderScript rs = RenderScript.create(getApplicationContext());
	//Create an Intrinsic Blur Script using the Renderscript
	ScriptIntrinsicBlur blurScript = ScriptIntrinsicBlur.create(rs, Element.U8_4(rs));
	//Create the Allocations (in/out) with the Renderscript and the in/out bitmaps
	Allocation allIn = Allocation.createFromBitmap(rs, bitmap);
	Allocation allOut = Allocation.createFromBitmap(rs, outBitmap);
	//Set the radius of the blur: 0 < radius <= 25
	blurScript.setRadius(20.0f);
	//Perform the Renderscript
	blurScript.setInput(allIn);
	blurScript.forEach(allOut);
	//Copy the final bitmap created by the out Allocation to the outBitmap
	allOut.copyTo(outBitmap);
	//recycle the original bitmap
	bitmap.recycle();
	//After finishing everything, we destroy the Renderscript.
	rs.destroy();
	return outBitmap;
}

我们开发的图像框架cv4j也提供了一个滤镜来实现高斯模糊。

GaussianBlurFilter filter = new GaussianBlurFilter();
filter.setSigma(10);

RxImageData.bitmap(bitmap).addFilter(filter).into(image2);

Java如何实现高斯模糊和图像的空间卷积

Java如何实现高斯模糊和图像的空间卷积

可以看出,cv4j实现的高斯模糊跟RenderScript实现的效果一致。

其中,GaussianBlurFilter的代码如下:

public class GaussianBlurFilter implements CommonFilter {
	private float[] kernel;
	private double sigma = 2;
	ExecutorService mExecutor;
	CompletionService service;
	public GaussianBlurFilter() {
		kernel = new float[0];
	}
	public void setSigma(double a) {
		this.sigma = a;
	}
	@Override
	  public ImageProcessor filter(final ImageProcessor src){
		final int width = src.getWidth();
		final int height = src.getHeight();
		final int size = width*height;
		int dims = src.getChannels();
		makeGaussianKernel(sigma, 0.002, (int)Math.min(width, height));
		mExecutor = TaskUtils.newFixedThreadPool("cv4j",dims);
		service = new ExecutorCompletionService<>(mExecutor);
		// save result
		for (int i=0; i() {
				public Void call() throws Exception {
					byte[] inPixels = src.tobyte(temp);
					byte[] temp = new byte[size];
					blur(inPixels, temp, width, height);
					// H Gaussian
					blur(temp, inPixels, height, width);
					// V Gaussain
					return null;
				}
			}
			);
		}
		for (int i = 0; i < dims; i++) {
			try {
				service.take();
			}
			catch (InterruptedException e) {
				e.printStackTrace();
			}
		}
		mExecutor.shutdown();
		return src;
	}
	/**
   * 

 here is 1D Gaussian    , 

   *    * @param inPixels    * @param outPixels    * @param width    * @param height    */ private void blur(byte[] inPixels, byte[] outPixels, int width, int height)   { int subCol = 0; int index = 0, index2 = 0; float sum = 0; int k = kernel.length-1; for (int row=0; row= width) { subCol = 0; } index2 = row * width + subCol; c = inPixels[index2] & 0xff; sum += c * kernel[Math.abs(m)]; } outPixels[index] = (byte)Tools.clamp(sum); index += height; } } } public void makeGaussianKernel(final double sigma, final double accuracy, int maxRadius) { int kRadius = (int)Math.ceil(sigma*Math.sqrt(-2*Math.log(accuracy)))+1; if (maxRadius < 50) maxRadius = 50; // too small maxRadius would result in inaccurate sum. if (kRadius > maxRadius) kRadius = maxRadius; kernel = new float[kRadius]; for (int i=0; i

空间卷积

二维卷积在图像处理中会经常遇到,图像处理中用到的大多是二维卷积的离散形式。

Java如何实现高斯模糊和图像的空间卷积

以下是cv4j实现的各种卷积效果。

Java如何实现高斯模糊和图像的空间卷积

cv4j 目前支持如下的空间卷积滤镜

filter名称作用
ConvolutionHVFilter卷积模糊或者降噪
MinMaxFilter最大最小值滤波去噪声
SAPNoiseFilter椒盐噪声增加噪声
SharpFilter锐化增强
MedimaFilter中值滤波去噪声
LaplasFilter拉普拉斯提取边缘
FindEdgeFilter寻找边缘梯度提取
SobelFilter梯度获取x、y方向的梯度提取
VarianceFilter方差滤波高通滤波
MaerOperatorFilter马尔操作高通滤波
USMFilterUSM增强

cv4j 是gloomyfish和我一起开发的图像处理库,目前还处于早期的版本。

目前已经实现的功能:

Java如何实现高斯模糊和图像的空间卷积

以上是“Java如何实现高斯模糊和图像的空间卷积”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联行业资讯频道!


本文标题:Java如何实现高斯模糊和图像的空间卷积
网站地址:http://cxhlcq.cn/article/iicgdh.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部