成都创新互联网站制作重庆分公司

使用scikit-learn和pandas怎么实现线性回归

这篇文章将为大家详细讲解有关使用scikit-learn和pandas怎么实现线性回归,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

我们注重客户提出的每个要求,我们充分考虑每一个细节,我们积极的做好网站设计制作、网站设计服务,我们努力开拓更好的视野,通过不懈的努力,创新互联建站赢得了业内的良好声誉,这一切,也不断的激励着我们更好的服务客户。 主要业务:网站建设,网站制作,网站设计,微信小程序定制开发,网站开发,技术开发实力,DIV+CSS,PHP及ASP,ASP.Net,SQL数据库的技术开发工程师。

1. 获取数据,定义问题

没有数据,当然没法研究机器学习啦。:) 这里我们用UCI大学公开的机器学习数据来跑线性回归。

里面是一个循环发电场的数据,共有9568个样本数据,每个数据有5列,分别是:AT(温度), V(压力), AP(湿度), RH(压强), PE(输出电力)。我们不用纠结于每项具体的意思。

我们的问题是得到一个线性的关系,对应PE是样本输出,而AT/V/AP/RH这4个是样本特征, 机器学习的目的就是得到一个线性回归模型,即:

PE=θ0+θ1∗AT+θ2∗V+θ3∗AP+θ4∗RH

而需要学习的,就是θ0,θ1,θ2,θ3,θ4这5个参数。

2. 整理数据

下载后的数据可以发现是一个压缩文件,解压后可以看到里面有一个xlsx文件,我们先用excel把它打开,接着“另存为“”csv格式,保存下来,后面我们就用这个csv来运行线性回归。

打开这个csv可以发现数据已经整理好,没有非法数据,因此不需要做预处理。但是这些数据并没有归一化,也就是转化为均值0,方差1的格式。也不用我们搞,后面scikit-learn在线性回归时会先帮我们把归一化搞定。

好了,有了这个csv格式的数据,我们就可以大干一场了。

3. 用pandas来读取数据

我们先打开ipython notebook,新建一个notebook。当然也可以直接在python的交互式命令行里面输入,不过还是推荐用notebook。下面的例子和输出我都是在notebook里面跑的。

先把要导入的库声明了:

import matplotlib.pyplot as plt

%matplotlib inline

import numpy as np

import pandas as pd

from sklearn import datasets, linear_model

接着我们就可以用pandas读取数据了:

# read_csv里面的参数是csv在你电脑上的路径,此处csv文件放在notebook运行目录下面的CCPP目录里

data = pd.read_csv('.\CCPP\ccpp.csv')

测试下读取数据是否成功:

#读取前五行数据,如果是最后五行,用data.tail()

data.head()

运行结果应该如下,看到下面的数据,说明pandas读取数据成功:

  AT V AP RH PE

0 8.34 40.77 1010.84 90.01 480.48

1 23.64 58.49 1011.40 74.20 445.75

2 29.74 56.90 1007.15 41.91 438.76

3 19.07 49.69 1007.22 76.79 453.09

4 11.80 40.66 1017.13 97.20 464.43

4. 准备运行算法的数据

我们看看数据的维度:

data.shape

结果是(9568, 5)。说明我们有9568个样本,每个样本有5列。

现在我们开始准备样本特征X,我们用AT, V,AP和RH这4个列作为样本特征。

X = data[['AT', 'V', 'AP', 'RH']]

X.head()

可以看到X的前五条输出如下:

  AT V AP RH

0 8.34 40.77 1010.84 90.01

1 23.64 58.49 1011.40 74.20

2 29.74 56.90 1007.15 41.91

3 19.07 49.69 1007.22 76.79

4 11.80 40.66 1017.13 97.20

接着我们准备样本输出y, 我们用PE作为样本输出。

y = data[['PE']]

y.head()

可以看到y的前五条输出如下:

  PE

0 480.48

1 445.75

2 438.76

3 453.09

4 464.43

5. 划分训练集和测试集

我们把X和y的样本组合划分成两部分,一部分是训练集,一部分是测试集,代码如下:

from sklearn.cross_validation import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)

查看下训练集和测试集的维度:

print X_train.shape

print y_train.shape

print X_test.shape

print y_test.shape

结果如下:

(7176, 4)

(7176, 1)

(2392, 4)

(2392, 1)  

可以看到75%的样本数据被作为训练集,25%的样本被作为测试集。

6. 运行scikit-learn的线性模型

终于到了临门一脚了,我们可以用scikit-learn的线性模型来拟合我们的问题了。scikit-learn的线性回归算法使用的是最小二乘法来实现的。代码如下:

from sklearn.linear_model import LinearRegression

linreg = LinearRegression()

linreg.fit(X_train, y_train)

拟合完毕后,我们看看我们的需要的模型系数结果:

print linreg.intercept_

print linreg.coef_

输出如下:

[ 447.06297099]

[[-1.97376045 -0.23229086  0.0693515  -0.15806957]]

这样我们就得到了在步骤1里面需要求得的5个值。也就是说PE和其他4个变量的关系如下:

PE=447.06297099−1.97376045∗AT−0.23229086∗V+0.0693515∗AP−0.15806957∗RH  

7. 模型评价

我们需要评估我们的模型的好坏程度,对于线性回归来说,我们一般用均方差(Mean Squared Error, MSE)或者均方根差(Root Mean Squared Error, RMSE)在测试集上的表现来评价模型的好坏。

我们看看我们的模型的MSE和RMSE,代码如下:

#模型拟合测试集

y_pred = linreg.predict(X_test)

from sklearn import metrics

# 用scikit-learn计算MSE

print "MSE:",metrics.mean_squared_error(y_test, y_pred)

# 用scikit-learn计算RMSE

print "RMSE:",np.sqrt(metrics.mean_squared_error(y_test, y_pred))

输出如下:

MSE: 20.0804012021

RMSE: 4.48111606657

得到了MSE或者RMSE,如果我们用其他方法得到了不同的系数,需要选择模型时,就用MSE小的时候对应的参数。

比如这次我们用AT, V,AP这3个列作为样本特征。不要RH, 输出仍然是PE。代码如下:

X = data[['AT', 'V', 'AP']]

y = data[['PE']]

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)

from sklearn.linear_model import LinearRegression

linreg = LinearRegression()

linreg.fit(X_train, y_train)

#模型拟合测试集

y_pred = linreg.predict(X_test)

from sklearn import metrics

# 用scikit-learn计算MSE

print "MSE:",metrics.mean_squared_error(y_test, y_pred)

# 用scikit-learn计算RMSE

print "RMSE:",np.sqrt(metrics.mean_squared_error(y_test, y_pred))

输出如下:

MSE: 23.2089074701

RMSE: 4.81756239919

可以看出,去掉RH后,模型拟合的没有加上RH的好,MSE变大了。

8. 交叉验证

我们可以通过交叉验证来持续优化模型,代码如下,我们采用10折交叉验证,即cross_val_predict中的cv参数为10:

X = data[['AT', 'V', 'AP', 'RH']]

y = data[['PE']]

from sklearn.model_selection import cross_val_predict

predicted = cross_val_predict(linreg, X, y, cv=10)

# 用scikit-learn计算MSE

print "MSE:",metrics.mean_squared_error(y, predicted)

# 用scikit-learn计算RMSE

print "RMSE:",np.sqrt(metrics.mean_squared_error(y, predicted))

     输出如下:

MSE: 20.7955974619

RMSE: 4.56021901469

可以看出,采用交叉验证模型的MSE比第6节的大,主要原因是我们这里是对所有折的样本做测试集对应的预测值的MSE,而第6节仅仅对25%的测试集做了MSE。两者的先决条件并不同。

9. 画图观察结果

这里画图真实值和预测值的变化关系,离中间的直线y=x直接越近的点代表预测损失越低。代码如下:

fig, ax = plt.subplots()

ax.scatter(y, predicted)

ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)

ax.set_xlabel('Measured')

ax.set_ylabel('Predicted')

plt.show()

输出的图像如下:

使用scikit-learn和pandas怎么实现线性回归

关于使用scikit-learn和pandas怎么实现线性回归就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。


网页题目:使用scikit-learn和pandas怎么实现线性回归
文章URL:http://cxhlcq.cn/article/ihjpop.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部