成都创新互联网站制作重庆分公司

附件nosql,附件炎

有哪些nosql软件能在windows平台下运行

Membase Membase 是 NoSQL 家族的一个新的重量级的成员。Membase是开源项目,源代码采用了Apache2.0的使用许可。该项目托管在GitHub.Source tarballs上,可以下载beta版本的Linux二进制包。该产品主要是由North Scale的memcached核心团队成员开发完成,其中还包括Zynga和NHN这两个主要贡献者的工程师,这两个组织都是很大的在线游戏和社区网络空间的供应商。 Membase容易安装、操作,可以从单节点方便的扩展到集群,而且为memcached(有线协议的兼容性)实现了即插即用功能,在应用方面为开发者和经营者提供了一个比较低的门槛。做为缓存解决方案,Memcached已经在不同类型的领域(特别是大容量的Web应用)有了广泛的使用,其中 Memcached的部分基础代码被直接应用到了Membase服务器的前端。 通过兼容多种编程语言和框架,Membase具备了很好的复用性。在安装和配置方面,Membase提供了有效的图形化界面和编程接口,包括可配置 的告警信息。 Membase的目标是提供对外的线性扩展能力,包括为了增加集群容量,可以针对统一的节点进行复制。 另外,对存储的数据进行再分配仍然是必要的。 这方面的一个有趣的特性是NoSQL解决方案所承诺的可预测的性能,类准确性的延迟和吞吐量。通过如下方式可以获得上面提到的特性: ◆ 自动将在线数据迁移到低延迟的存储介质的技术(内存,固态硬盘,磁盘) ◆ 可选的写操作一一异步,同步(基于复制,持久化) ◆ 反向通道再平衡[未来考虑支持] ◆ 多线程低锁争用 ◆ 尽可能使用异步处理 ◆ 自动实现重复数据删除 ◆ 动态再平衡现有集群 ◆ 通过把数据复制到多个集群单元和支持快速失败转移来提供系统的高可用性。 MongoDB MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bjson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。它的特点是高性能、易部署、易使用,存储数据非常方便。 主要功能特性: ◆ 面向集合存储,易存储对象类型的数据 “面向集合”(Collenction-Oriented),意思是数据被分组存储在数据集中,被称为一个集合(Collenction)。每个 集合在数据库中都有一个唯一的标识名,并且可以包含无限数目的文档。集合的概念类似关系型数据库(RDBMS)里的表(table),不同的是它不需要定 义任何模式(schema)。 ◆ 模式自由 模式自由(schema-free),意味着对于存储在mongodb数据库中的文件,我们不需要知道它的任何结构定义。如果需要的话,你完全可以把不同结构的文件存储在同一个数据库里。 ◆支持动态查询 ◆支持完全索引,包含内部对象 ◆支持查询 ◆支持复制和故障恢复 ◆使用高效的二进制数据存储,包括大型对象(如视频等) ◆自动处理碎片,以支持云计算层次的扩展性 ◆支持RUBY,PYTHON,JAVA,C++,PHP等多种语言 ◆文件存储格式为BSON(一种JSON的扩展) BSON(Binary Serialized document Format)存储形式是指:存储在集合中的文档,被存储为键-值对的形式。键用于唯一标识一个文档,为字符串类型,而值则可以是各种复杂的文件类型。 ◆可通过网络访问 MongoDB服务端可运行在Linux、Windows或OS X平台,支持32位和64位应用,默认端口为27017。推荐运行在64位平台,因为MongoDB在32位模式运行时支持的最大文件尺寸为2GB。 MongoDB把数据存储在文件中(默认路径为:/data/db),为提高效率使用内存映射文件进行管理。 Hypertable Hypertable是一个开源、高性能、可伸缩的数据库,它采用与Google的Bigtable相似的模型。在过去数年中,Google为在PC集群 上运行的可伸缩计算基础设施设计建造了三个关键部分。第一个关键的基础设施是Google File System(GFS),这是一个高可用的文件系统,提供了一个全局的命名空间。它通过跨机器(和跨机架)的文件数据复制来达到高可用性,并因此免受传统 文件存储系统无法避免的许多失败的影响,比如电源、内存和网络端口等失败。第二个基础设施是名为Map-Reduce的计算框架,它与GFS紧密协作,帮 助处理收集到的海量数据。第三个基础设施是Bigtable,它是传统数据库的替代。Bigtable让你可以通过一些主键来组织海量数据,并实现高效的 查询。Hypertable是Bigtable的一个开源实现,并且根据我们的想法进行了一些改进。 Apache Cassandra Apache Cassandra是一套开源分布式Key-Value存储系统。它最初由Facebook开发,用于储存特别大的数据。Facebook在使用此系统。 主要特性: ◆ 分布式 ◆ 基于column的结构化 ◆ 高伸展性 Cassandra的主要特点就是它不是一个数据库,而是由一堆数据库节点共同构成的一个分布式网络服务,对Cassandra 的一个写操作,会被复制到其他节点上去,对Cassandra的读操作,也会被路由到某个节点上面去读取。对于一个Cassandra群集来说,扩展性能 是比较简单的事情,只管在群集里面添加节点就可以了。 Cassandra是一个混合型的非关系的数据库,类似于Google的BigTable。其主要功能比 Dynomite(分布式的Key-Value存 储系统)更丰富,但支持度却不如文档存储MongoDB(介于关系数据库和非关系数据库之间的开源产品,是非关系数据库当中功能最丰富,最像关系数据库 的。Cassandra最初由Facebook开发,后转变成了开源项目。它是一个网络社交云计算方面理想的数据库。以Amazon专有的完全分布式的Dynamo为基础,结合了Google BigTable基于列族(Column Family)的数据模型。P2P去中心化的存储。很多方面都可以称之为Dynamo 2.0。 CouchDB 所用语言: Erlang 特点:DB一致性,易于使用 使用许可: Apache 协议: HTTP/REST 双向数据复制,持续进行或临时处理,处理时带冲突检查,因此,采用的是master-master复制 MVCC – 写操作不阻塞读操作 可保存文件之前的版本 Crash-only(可靠的)设计 需要不时地进行数据压缩 视图:嵌入式 映射/减少 格式化视图:列表显示 支持进行服务器端文档验证 支持认证 根据变化实时更新 支持附件处理 因此, CouchApps(独立的 js应用程序) 需要 jQuery程序库 最佳应用场景:适用于数据变化较少,执行预定义查询,进行数据统计的应用程序。适用于需要提供数据版本支持的应用程序。 例如:CRM、CMS系统。 master-master复制对于多站点部署是非常有用的。 和其他数据库比较,其突出特点是: ◆ 模式灵活 :使用Cassandra,像文档存储,你不必提前解决记录中的字段。你可以在系统运行时随意的添加或移除字段。这是一个惊人的效率提升,特别是在大型部 署上。 ◆ 真正的可扩展性 :Cassandra是纯粹意义上的水平扩展。为给集群添加更多容量,可以指向另一台电脑。你不必重启任何进程,改变应用查询,或手动迁移任何数据。 ◆ 多数据中心识别 :你可以调整你的节点布局来避免某一个数据中心起火,一个备用的数据中心将至少有每条记录的完全复制。 ◆ 范围查询 :如果你不喜欢全部的键值查询,则可以设置键的范围来查询。 ◆ 列表数据结构 :在混合模式可以将超级列添加到5维。对于每个用户的索引,这是非常方便的。 ◆ 分布式写操作 :有可以在任何地方任何时间集中读或写任何数据。并且不会有任何单点失败。 问度娘,啥都有。

成都创新互联公司主营天台网站建设的网络公司,主营网站建设方案,app软件开发公司,天台h5小程序设计搭建,天台网站营销推广欢迎天台等地区企业咨询

nosql解决方案为什么需要固态硬盘

Membase

Membase 是 NoSQL 家族的一个新的重量级的成员。Membase是开源项目,源代码采用了Apache2.0的使用许可。该项目托管在GitHub.Source tarballs上,可以下载beta版本的Linux二进制包。该产品主要是由North Scale的memcached核心团队成员开发完成,其中还包括Zynga和NHN这两个主要贡献者的工程师,这两个组织都是很大的在线游戏和社区网络空间的供应商。

Membase容易安装、操作,可以从单节点方便的扩展到集群,而且为memcached(有线协议的兼容性)实现了即插即用功能,在应用方面为开发者和经营者提供了一个比较低的门槛。做为缓存解决方案,Memcached已经在不同类型的领域(特别是大容量的Web应用)有了广泛的使用,其中 Memcached的部分基础代码被直接应用到了Membase服务器的前端。

通过兼容多种编程语言和框架,Membase具备了很好的复用性。在安装和配置方面,Membase提供了有效的图形化界面和编程接口,包括可配置 的告警信息。

Membase的目标是提供对外的线性扩展能力,包括为了增加集群容量,可以针对统一的节点进行复制。 另外,对存储的数据进行再分配仍然是必要的。

这方面的一个有趣的特性是NoSQL解决方案所承诺的可预测的性能,类准确性的延迟和吞吐量。通过如下方式可以获得上面提到的特性:

◆ 自动将在线数据迁移到低延迟的存储介质的技术(内存,固态硬盘,磁盘)

◆ 可选的写操作一一异步,同步(基于复制,持久化)

◆ 反向通道再平衡[未来考虑支持]

◆ 多线程低锁争用

◆ 尽可能使用异步处理

◆ 自动实现重复数据删除

◆ 动态再平衡现有集群

◆ 通过把数据复制到多个集群单元和支持快速失败转移来提供系统的高可用性。

MongoDB

MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bjson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。它的特点是高性能、易部署、易使用,存储数据非常方便。

主要功能特性:

◆ 面向集合存储,易存储对象类型的数据

“面向集合”(Collenction-Oriented),意思是数据被分组存储在数据集中,被称为一个集合(Collenction)。每个 集合在数据库中都有一个唯一的标识名,并且可以包含无限数目的文档。集合的概念类似关系型数据库(RDBMS)里的表(table),不同的是它不需要定 义任何模式(schema)。

◆ 模式自由

模式自由(schema-free),意味着对于存储在mongodb数据库中的文件,我们不需要知道它的任何结构定义。如果需要的话,你完全可以把不同结构的文件存储在同一个数据库里。

◆支持动态查询

◆支持完全索引,包含内部对象

◆支持查询

◆支持复制和故障恢复

◆使用高效的二进制数据存储,包括大型对象(如视频等)

◆自动处理碎片,以支持云计算层次的扩展性

◆支持RUBY,PYTHON,JAVA,C++,PHP等多种语言

◆文件存储格式为BSON(一种JSON的扩展)

BSON(Binary Serialized document Format)存储形式是指:存储在集合中的文档,被存储为键-值对的形式。键用于唯一标识一个文档,为字符串类型,而值则可以是各种复杂的文件类型。

◆可通过网络访问

MongoDB服务端可运行在Linux、Windows或OS X平台,支持32位和64位应用,默认端口为27017。推荐运行在64位平台,因为MongoDB在32位模式运行时支持的最大文件尺寸为2GB。

MongoDB把数据存储在文件中(默认路径为:/data/db),为提高效率使用内存映射文件进行管理。

Hypertable

Hypertable是一个开源、高性能、可伸缩的数据库,它采用与Google的Bigtable相似的模型。在过去数年中,Google为在PC集群 上运行的可伸缩计算基础设施设计建造了三个关键部分。第一个关键的基础设施是Google File System(GFS),这是一个高可用的文件系统,提供了一个全局的命名空间。它通过跨机器(和跨机架)的文件数据复制来达到高可用性,并因此免受传统 文件存储系统无法避免的许多失败的影响,比如电源、内存和网络端口等失败。第二个基础设施是名为Map-Reduce的计算框架,它与GFS紧密协作,帮 助处理收集到的海量数据。第三个基础设施是Bigtable,它是传统数据库的替代。Bigtable让你可以通过一些主键来组织海量数据,并实现高效的 查询。Hypertable是Bigtable的一个开源实现,并且根据我们的想法进行了一些改进。

Apache Cassandra

Apache Cassandra是一套开源分布式Key-Value存储系统。它最初由Facebook开发,用于储存特别大的数据。Facebook在使用此系统。

主要特性:

◆ 分布式

◆ 基于column的结构化

◆ 高伸展性

Cassandra的主要特点就是它不是一个数据库,而是由一堆数据库节点共同构成的一个分布式网络服务,对Cassandra 的一个写操作,会被复制到其他节点上去,对Cassandra的读操作,也会被路由到某个节点上面去读取。对于一个Cassandra群集来说,扩展性能 是比较简单的事情,只管在群集里面添加节点就可以了。

Cassandra是一个混合型的非关系的数据库,类似于Google的BigTable。其主要功能比 Dynomite(分布式的Key-Value存 储系统)更丰富,但支持度却不如文档存储MongoDB(介于关系数据库和非关系数据库之间的开源产品,是非关系数据库当中功能最丰富,最像关系数据库 的。Cassandra最初由Facebook开发,后转变成了开源项目。它是一个网络社交云计算方面理想的数据库。以Amazon专有的完全分布式的Dynamo为基础,结合了Google BigTable基于列族(Column Family)的数据模型。P2P去中心化的存储。很多方面都可以称之为Dynamo 2.0。

CouchDB

所用语言: Erlang

特点:DB一致性,易于使用

使用许可: Apache

协议: HTTP/REST

双向数据复制,持续进行或临时处理,处理时带冲突检查,因此,采用的是master-master复制

MVCC – 写操作不阻塞读操作

可保存文件之前的版本

Crash-only(可靠的)设计

需要不时地进行数据压缩

视图:嵌入式 映射/减少

格式化视图:列表显示

支持进行服务器端文档验证

支持认证

根据变化实时更新

支持附件处理

因此, CouchApps(独立的 js应用程序)

需要 jQuery程序库

最佳应用场景:适用于数据变化较少,执行预定义查询,进行数据统计的应用程序。适用于需要提供数据版本支持的应用程序。

例如:CRM、CMS系统。 master-master复制对于多站点部署是非常有用的。

和其他数据库比较,其突出特点是:

◆ 模式灵活 :使用Cassandra,像文档存储,你不必提前解决记录中的字段。你可以在系统运行时随意的添加或移除字段。这是一个惊人的效率提升,特别是在大型部 署上。

◆ 真正的可扩展性 :Cassandra是纯粹意义上的水平扩展。为给集群添加更多容量,可以指向另一台电脑。你不必重启任何进程,改变应用查询,或手动迁移任何数据。

◆ 多数据中心识别 :你可以调整你的节点布局来避免某一个数据中心起火,一个备用的数据中心将至少有每条记录的完全复制。

◆ 范围查询 :如果你不喜欢全部的键值查询,则可以设置键的范围来查询。

◆ 列表数据结构 :在混合模式可以将超级列添加到5维。对于每个用户的索引,这是非常方便的。

◆ 分布式写操作 :有可以在任何地方任何时间集中读或写任何数据。并且不会有任何单点失败。

问度娘,啥都有。

高并发写选sql还是nosql?

SQL的独特优势包括:

1. SQL能够加强与数据的交互,并允许对单个数据库设计提出问题。这是很关键的特征,因为无法交互的数据基本上是没用的,并且,增强的交互性能够带来新的见解、新的问题和更有意义的未来交互。

2. SQL是标准化的,使用户能够跨系统运用他们的知识,并对第三方附件和工具提供支持。

3. SQL能够扩展,并且是多功能和经过时间验证的,这能够解决从快写为主导的传输到扫描密集型深入分析等问题。

4. SQL对数据呈现和存储采用正交形式,一些SQL系统支持JSON和其他结构化对象格式,比NoSQL具有更好的性能和更多功能。

NoSQL特点:

易扩展

NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。

大数据量,高性能

NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。

灵活的数据模型

NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。

高可用

NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。

写一个python框架难吗

首先你需要知道一个Web应用基本的请求处理流程。以最简单最原始的动态网页为例,你点击链接(GET),提交表单(POST),就是与服务器端建立了连接之后发送了一个HTTP请求(RFC2616 5.1节,之后都以HTTP 1.1为例),里面至少有方法(动词,就是GET啦POST什么的,详见RFC2616第9节),地址(URL),HTTP版本,还可能带上Cookie(会话的一般实现机制),缓存相关的信息(RFC2616 13节),User-Agent串等等一堆信息。对于POST请求我们还有表单内容作为请求实体(RFC2616 7.2节),里面是你填写的表单内容。

于是我们有了一些关于请求的数据,不过现在一般来讲这些数据还在前端服务器(反向代理,比如nginx,暂且忽略掉负载均衡,反正是透明的,也不考虑裸WSGI容器直接扛请求的情况)的手上,还没有传进后端语言(这里是Python)。我们就针对每一种语言都有特定的机制,用来将HTTP的请求信息映射到相应的编程语言范畴,叫做Web服务器界面(Web server interface),通用如CGI/FCGI/SCGI,特定于某一语言如WSGI/PSGI/Rack/...,特定于某一操作系统如ISAPI(这货还活着?),一些已经不再使用的就不提了。总之在Python世界里这就是WSGI(PEP 3333, Web Server Gateway Interface),它就定义了Python语言与Web服务器之间的界面。在WSGI里,

请求的处理过程被映射为对应用callable的调用(application(environ, start_response),知乎不支持inline代码块?);

请求信息被映射到environ字典中的相应键值,比如请求方法被映射到environ['REQUEST_METHOD'],请求的“相对路径”被映射到environ['PATH_INFO'](过度简化;暂且不提WSGI应用挂载点,框架层一般也不用关心这个,挂载WSGI应用一般是WSGI容器如gunicorn、uWSGI之类组件的工作);

发送响应头的动作被映射到调用start_response(status, response_headers)(不考虑可选的第三个参数异常信息);

返回响应数据被映射到application返回iterable的动作。

于是响应便从Python返回到Web服务器,再被发送回浏览器,浏览器将响应内容渲染,一个请求就完成啦。

有了这样的感性认识,那么我们作为Python Web开发框架的作者,要做的事情就是在WSGI规范的基础之上,提供尽可能便捷的开发手段和尽可能低的框架开销,也即我们的代码将要工作在WSGI与业务逻辑的中间层。架构上,Web开发框架或多或少都遵循MVC的设计模式(Django管它叫MTV,其实差不多)。同时,由于框架位于中间件的位置,加上其鼓励模块化与代码复用的性质,自然需要为常见的HTTP操作提供抽象。这里就可以展开一些话题:

请求路径到view/controller的映射,请求参数的解析(routing,也叫路由)。

正则匹配的方案,比如Django内置了一个简单的正则表达式解析组件,能解析一般常见语法的正则表达式,把capturing groups解析成位置参数,named capturing groups解析成关键字参数。

也有DSL的方案,比如Werkzeug的路由组件。

请求实体的处理。表单解析,配合Web服务器进行上传文件处理。

正常的urlencoded表单,JSON表单,text/plain数据,multi-part表单

multi-part附件,附件操作API

大文件上传(这个一般会被前端服务器保存在磁盘上的临时文件里,比方说nginx就是这么实现的)。

会话。HTTP是无状态(stateless)的,这个特点非常重要。如果没有会话,你连续做几个请求,却没有手段证明你们是同一个人/同一台机器(你完全可能是代理服务器)。

存储会话数据的会话后端(内存数据结构?文件?RDBMS?Redis?Memcache?)

安全机制(HMAC什么的,可以参考beaker的secure cookie实现)

请求处理流程中的会话中间件(从Cookie中提取会话,从query string中提取会话,从自定义头中提取会话,等等)

View/Controller界面。发挥你的创造力,用上你的工程经验。

Function-based or Class-based views? 参考:Django, Bottle, web.py, Tornado等一票框架的做法

框架的可选机制与服务如何暴露,

装饰器?(比如@login_required 这种额外要求)

回调?(能想到的只有Tornado和Twisted这种异步框架做事情的方式,还有整个JS生态系统都是回调(不考虑Promise什么的)的思路)

传入应用(业务逻辑)层的数据结构如何设计?(HttpRequest等价物,名字可能记不清了)

响应数据结构如何设计?(HttpResponse等价物,同上)

数据库操作封装。Web应用基本都是数据为中心,这个组件非常有必要,也是撰写可复用代码必须的一环,毕竟光是框架抽象了,数据库操作还是裸SQL什么的,到时候生产环境一换(比如MySQL变pgsql)还不是傻眼。

关系型数据库。一站式解决方案参考:Django ORM、SQLAlchemy;轻量级解决方案参考各数据库Python绑定。

非关系数据库。各数据库Python绑定(pymongo, riak, redis-py之类),这个没什么可替代方案了,因为本来各种NoSQL库都是适应某一特殊需求设计的,没什么互相替换的必要,那意味着重新进行技术选型。

未完待续

接下来的内容:

主要响应AJAX/API请求的框架设计思路

Python下实时Web框架思路

框架设计哲学

框架性能分析方法

nosql数据库有哪些

1. CouchDB

所用语言: Erlang

特点:DB一致性,易于使用

使用许可: Apache

协议: HTTP/REST

双向数据复制,

持续进行或临时处理,

处理时带冲突检查,

因此,采用的是master-master复制(见编注2)

MVCC – 写操作不阻塞读操作

可保存文件之前的版本

Crash-only(可靠的)设计

需要不时地进行数据压缩

视图:嵌入式 映射/减少

格式化视图:列表显示

支持进行服务器端文档验证

支持认证

根据变化实时更新

支持附件处理

因此, CouchApps(独立的 js应用程序)

需要 jQuery程序库

最佳应用场景:适用于数据变化较少,执行预定义查询,进行数据统计的应用程序。适用于需要提供数据版本支持的应用程序。

例如: CRM、CMS系统。 master-master复制对于多站点部署是非常有用的。

(编注2:master-master复制:是一种数据库同步方法,允许数据在一组计算机之间共享数据,并且可以通过小组中任意成员在组内进行数据更新。)

2. Redis

所用语言:C/C++

特点:运行异常快

使用许可: BSD

协议:类 Telnet

有硬盘存储支持的内存数据库,

但自2.0版本以后可以将数据交换到硬盘(注意, 2.4以后版本不支持该特性!)

Master-slave复制(见编注3)

虽然采用简单数据或以键值索引的哈希表,但也支持复杂操作,例如 ZREVRANGEBYSCORE。

INCR co (适合计算极限值或统计数据)

支持 sets(同时也支持 union/diff/inter)

支持列表(同时也支持队列;阻塞式 pop操作)

支持哈希表(带有多个域的对象)

支持排序 sets(高得分表,适用于范围查询)

Redis支持事务

支持将数据设置成过期数据(类似快速缓冲区设计)

Pub/Sub允许用户实现消息机制

最佳应用场景:适用于数据变化快且数据库大小可遇见(适合内存容量)的应用程序。

例如:股票价格、数据分析、实时数据搜集、实时通讯。

(编注3:Master-slave复制:如果同一时刻只有一台服务器处理所有的复制请求,这被称为

Master-slave复制,通常应用在需要提供高可用性的服务器集群。)

3. MongoDB

所用语言:C++

特点:保留了SQL一些友好的特性(查询,索引)。

使用许可: AGPL(发起者: Apache)

协议: Custom, binary( BSON)

Master/slave复制(支持自动错误恢复,使用 sets 复制)

内建分片机制

支持 javascript表达式查询

可在服务器端执行任意的 javascript函数

update-in-place支持比CouchDB更好

在数据存储时采用内存到文件映射

对性能的关注超过对功能的要求

建议最好打开日志功能(参数 –journal)

在32位操作系统上,数据库大小限制在约2.5Gb

空数据库大约占 192Mb

采用 GridFS存储大数据或元数据(不是真正的文件系统)

最佳应用场景:适用于需要动态查询支持;需要使用索引而不是 map/reduce功能;需要对大数据库有性能要求;需要使用

CouchDB但因为数据改变太频繁而占满内存的应用程序。

例如:你本打算采用 MySQL或 PostgreSQL,但因为它们本身自带的预定义栏让你望而却步。

4. Riak

所用语言:Erlang和C,以及一些Javascript

特点:具备容错能力

使用许可: Apache

协议: HTTP/REST或者 custom binary

可调节的分发及复制(N, R, W)

用 JavaScript or Erlang在操作前或操作后进行验证和安全支持。

使用JavaScript或Erlang进行 Map/reduce

连接及连接遍历:可作为图形数据库使用

索引:输入元数据进行搜索(1.0版本即将支持)

大数据对象支持( Luwak)

提供“开源”和“企业”两个版本

全文本搜索,索引,通过 Riak搜索服务器查询( beta版)

支持Masterless多站点复制及商业许可的 SNMP监控

最佳应用场景:适用于想使用类似 Cassandra(类似Dynamo)数据库但无法处理

bloat及复杂性的情况。适用于你打算做多站点复制,但又需要对单个站点的扩展性,可用性及出错处理有要求的情况。

例如:销售数据搜集,工厂控制系统;对宕机时间有严格要求;可以作为易于更新的 web服务器使用。

5. Membase

所用语言: Erlang和C

特点:兼容 Memcache,但同时兼具持久化和支持集群

使用许可: Apache 2.0

协议:分布式缓存及扩展

非常快速(200k+/秒),通过键值索引数据

可持久化存储到硬盘

所有节点都是唯一的( master-master复制)

在内存中同样支持类似分布式缓存的缓存单元

写数据时通过去除重复数据来减少 IO

提供非常好的集群管理 web界面

更新软件时软无需停止数据库服务

支持连接池和多路复用的连接代理

最佳应用场景:适用于需要低延迟数据访问,高并发支持以及高可用性的应用程序

例如:低延迟数据访问比如以广告为目标的应用,高并发的 web 应用比如网络游戏(例如 Zynga)

6. Neo4j

所用语言: Java

特点:基于关系的图形数据库

使用许可: GPL,其中一些特性使用 AGPL/商业许可

协议: HTTP/REST(或嵌入在 Java中)

可独立使用或嵌入到 Java应用程序

图形的节点和边都可以带有元数据

很好的自带web管理功能

使用多种算法支持路径搜索

使用键值和关系进行索引

为读操作进行优化

支持事务(用 Java api)

使用 Gremlin图形遍历语言

支持 Groovy脚本

支持在线备份,高级监控及高可靠性支持使用 AGPL/商业许可

最佳应用场景:适用于图形一类数据。这是 Neo4j与其他nosql数据库的最显著区别

例如:社会关系,公共交通网络,地图及网络拓谱

7. Cassandra

所用语言: Java

特点:对大型表格和 Dynamo支持得最好

使用许可: Apache

协议: Custom, binary (节约型)

可调节的分发及复制(N, R, W)

支持以某个范围的键值通过列查询

类似大表格的功能:列,某个特性的列集合

写操作比读操作更快

基于 Apache分布式平台尽可能地 Map/reduce

我承认对 Cassandra有偏见,一部分是因为它本身的臃肿和复杂性,也因为 Java的问题(配置,出现异常,等等)

最佳应用场景:当使用写操作多过读操作(记录日志)如果每个系统组建都必须用 Java编写(没有人因为选用

Apache的软件被解雇)

例如:银行业,金融业(虽然对于金融交易不是必须的,但这些产业对数据库的要求会比它们更大)写比读更快,所以一个自然的特性就是实时数据分析

8. HBase

(配合 ghshephard使用)

所用语言: Java

特点:支持数十亿行X上百万列

使用许可: Apache

协议:HTTP/REST (支持 Thrift,见编注4)

在 BigTable之后建模

采用分布式架构 Map/reduce

对实时查询进行优化

高性能 Thrift网关

通过在server端扫描及过滤实现对查询操作预判

支持 XML, Protobuf, 和binary的HTTP

Cascading, hive, and pig source and sink modules

基于 Jruby( JIRB)的shell

对配置改变和较小的升级都会重新回滚

不会出现单点故障

堪比MySQL的随机访问性能

最佳应用场景:适用于偏好BigTable:)并且需要对大数据进行随机、实时访问的场合。

例如: Facebook消息数据库(更多通用的用例即将出现)

编注4:Thrift

是一种接口定义语言,为多种其他语言提供定义和创建服务,由Facebook开发并开源。

当然,所有的系统都不只具有上面列出的这些特性。这里我仅仅根据自己的观点列出一些我认为的重要特性。与此同时,技术进步是飞速的,所以上述的内容肯定需要不断更新。我会尽我所能地更新这个列表。


名称栏目:附件nosql,附件炎
当前链接:http://cxhlcq.cn/article/hoiici.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部