成都创新互联网站制作重庆分公司

go语言中的nil,go语言中的协程

数据段保存有如下字符串:string byte

string是Go语言中的基础数据类型。

我们提供的服务有:网站制作、网站建设、微信公众号开发、网站优化、网站认证、仲巴ssl等。为上千企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的仲巴网站制作公司

声明string变量非常简单,常见的方式有以下两种:

声明一个空字符串后再赋值。

var s string。

s = "hello world"。

需要注意的是空字符只是长度为0,但不是nil。不存在值为nil的string。

使用简短变量声明:

s := "hello world" //直接初始化字符串。

双引号与单引号。

字符串不仅可以使用双引号赋值,也可以使用反单引号赋值,它们的区别是在于对特殊字符的处理。

假如我们希望string变量表示下面的字符串,它包括换行符和双引号:

Hi。

this is "Steven"。

1。

2。

使用双引号表示时,需要对特殊字符转义,如下所示:

s:= "Hi, \nthis is \"Steven\"."。

1。

如果使用反单引号时,不需要对特殊符号转义,如下所示:

s := Hi。

this is "Steven"。

需要注意的是,字符串拼接会触发内存分配以及内存拷贝,单行语句拼接多个字符串只分配一次内存。比如上面的语句中,在拼接时,会先计算最终字符串的长度后再分配内存。

类型转换:

项目中,数据经常需要在string和字节[]byte之间转换。

Golang 中更好的错误处理:理论和实践技巧

云和安全管理服务专家新钛云服 张春翻译

这种方法有几个缺点。首先,它可以对程序员隐藏错误处理路径,特别是在捕获异常不是强制性的情况下,例如在 Python 中。即使在具有必须处理的 Java 风格的检查异常的语言中,如果在与原始调用不同的级别上处理错误,也并不总是很明显错误是从哪里引发的。

我们都见过长长的代码块包装在一个 try-catch 块中。在这种情况下,catch 块实际上充当 goto 语句,这通常被认为是有害的(奇怪的是,C 中的关键字被认为可以接受的少数用例之一是错误后清理,因为该语言没有 Golang- 样式延迟语句)。

如果你确实从源头捕获异常,你会得到一个不太优雅的 Go 错误模式版本。这可能会解决混淆代码的问题,但会遇到另一个问题:性能。在诸如 Java 之类的语言中,抛出异常可能比函数的常规返回慢数百倍。

Java 中最大的性能成本是由打印异常的堆栈跟踪造成的,这是昂贵的,因为运行的程序必须检查编译它的源代码 。仅仅进入一个 try 块也不是空闲的,因为需要保存 CPU 内存寄存器的先前状态,因为它们可能需要在抛出异常的情况下恢复。

如果您将异常视为通常不会发生的异常情况,那么异常的缺点并不重要。这可能是传统的单体应用程序的情况,其中大部分代码库不必进行网络调用——一个操作格式良好的数据的函数不太可能遇到错误(除了错误的情况)。一旦您在代码中添加 I/O,无错误代码的梦想就会破灭:您可以忽略错误,但不能假装它们不存在!

try {

doSometing()

} catch (IOException e) {

// ignore it

}

与大多数其他编程语言不同,Golang 接受错误是不可避免的。 如果在单体架构时代还不是这样,那么在今天的模块化后端服务中,服务通常和外部 API 调用、数据库读取和写入以及与其他服务通信 。

以上所有方法都可能失败,解析或验证从它们接收到的数据(通常在无模式 JSON 中)也可能失败。Golang 使可以从这些调用返回的错误显式化,与普通返回值的等级相同。从函数调用返回多个值的能力支持这一点,这在大多数语言中通常是不可能的。Golang 的错误处理系统不仅仅是一种语言怪癖,它是一种将错误视为替代返回值的完全不同的方式!

重复 if err != nil

对 Go 错误处理的一个常见批评是被迫重复以下代码块:

res, err := doSomething()

if err != nil {

// Handle error

}

对于新用户来说,这可能会觉得没用而且浪费行数:在其他语言中需要 3 行的函数很可能会增长到 12 行 :

这么多行代码!这么低效!如果您认为上述内容不优雅或浪费代码,您可能忽略了我们检查代码中的错误的全部原因:我们需要能够以不同的方式处理它们!对 API 或数据库的调用可能会被重试。

有时事件的顺序很重要:调用外部 API 之前发生的错误可能不是什么大问题(因为数据从未通过发送),而 API 调用和写入本地数据库之间的错误可能需要立即注意,因为 这可能意味着系统最终处于不一致的状态。即使我们只想将错误传播给调用者,我们也可能希望用失败的解释来包装它们,或者为每个错误返回一个自定义错误类型。

并非所有错误都是相同的,并且向调用者返回适当的错误是 API 设计的重要部分,无论是对于内部包还是 REST API 。

不必担心在你的代码中重复 if err != nil ——这就是 Go 中的代码应该看起来的样子。

自定义错误类型和错误包装

从导出的方法返回错误时,请考虑指定自定义错误类型,而不是单独使用错误字符串。字符串在意外代码中是可以的,但在导出的函数中,它们成为函数公共 API 的一部分。更改错误字符串将是一项重大更改——如果没有明确的错误类型,需要检查返回错误类型的单元测试将不得不依赖原始字符串值!事实上,基于字符串的错误也使得在私有方法中测试不同的错误案例变得困难,因此您也应该考虑在包中使用它们。回到错误与异常的争论,返回错误也使代码比抛出异常更容易测试,因为错误只是要检查的返回值。不需要测试框架或在测试中捕获异常 。

可以在 database/sql 包中找到简单自定义错误类型的一个很好的示例。它定义了一个导出常量列表,表示包可以返回的错误类型,最著名的是 sql.ErrNoRows。虽然从 API 设计的角度来看,这种特定的错误类型有点问题(您可能会争辩说 API 应该返回一个空结构而不是错误),但任何需要检查空行的应用程序都可以导入该常量并在代码中使用它不必担心错误消息本身会改变和破坏代码。

对于更复杂的错误处理,您可以通过实现返回错误字符串的 Error() 方法来定义自定义错误类型。自定义错误可以包括元数据,例如错误代码或原始请求参数。如果您想表示错误类别,它们很有用。DigitalOcean 的本教程展示了如何使用自定义错误类型来表示可以重试的一类临时错误。

通常,错误会通过将低级错误与更高级别的解释包装起来,从而在程序的调用堆栈中传播。例如,数据库错误可能会以下列格式记录在 API 调用处理程序中:调用 CreateUser 端点时出错:查询数据库时出错:pq:检测到死锁。这很有用,因为它可以帮助我们跟踪错误在系统中传播的过程,向我们展示根本原因(数据库事务引擎中的死锁)以及它对更广泛系统的影响(调用者无法创建新用户)。

自 Go 1.13 以来,此模式具有特殊的语言支持,并带有错误包装。通过在创建字符串错误时使用 %w 动词,可以使用 Unwrap() 方法访问底层错误。除了比较错误相等性的函数 errors.Is() 和 errors.As() 外,程序还可以获取包装错误的原始类型或标识。这在某些情况下可能很有用,尽管我认为在确定如何处理所述错误时最好使用顶级错误的类型。

Panics

不要 panic()!长时间运行的应用程序应该优雅地处理错误而不是panic。即使在无法恢复的情况下(例如在启动时验证配置),最好记录一个错误并优雅地退出。panic比错误消息更难诊断,并且可能会跳过被推迟的重要关闭代码。

Logging

我还想简要介绍一下日志记录,因为它是处理错误的关键部分。通常你能做的最好的事情就是记录收到的错误并继续下一个请求。

除非您正在构建简单的命令行工具或个人项目,否则您的应用程序应该使用结构化的日志库,该库可以为日志添加时间戳,并提供对日志级别的控制。最后一部分特别重要,因为它将允许您突出显示应用程序记录的所有错误和警告。通过帮助将它们与信息级日志分开,这将为您节省无数时间。

微服务架构还应该在日志行中包含服务的名称以及机器实例的名称。默认情况下记录这些时,程序代码不必担心包含它们。您也可以在日志的结构化部分中记录其他字段,例如收到的错误(如果您不想将其嵌入日志消息本身)或有问题的请求或响应。只需确保您的日志没有泄露任何敏感数据,例如密码、API 密钥或用户的个人数据!

对于日志库,我过去使用过 logrus 和 zerolog,但您也可以选择其他结构化日志库。如果您想了解更多信息,互联网上有许多关于如何使用这些的指南。如果您将应用程序部署到云中,您可能需要日志库上的适配器来根据您的云平台的日志 API 格式化日志 - 没有它,云平台可能无法检测到日志级别等某些功能。

如果您在应用程序中使用调试级别日志(默认情况下通常不记录),请确保您的应用程序可以轻松更改日志级别,而无需更改代码。更改日志级别还可以暂时使信息级别甚至警告级别的日志静音,以防它们突然变得过于嘈杂并开始淹没错误。您可以使用在启动时检查以设置日志级别的环境变量来实现这一点。

原文:

彻底理解Golang Map

本文目录如下,阅读本文后,将一网打尽下面Golang Map相关面试题

Go中的map是一个指针,占用8个字节,指向hmap结构体; 源码 src/runtime/map.go 中可以看到map的底层结构

每个map的底层结构是hmap,hmap包含若干个结构为bmap的bucket数组。每个bucket底层都采用链表结构。接下来,我们来详细看下map的结构

bmap 就是我们常说的“桶”,一个桶里面会最多装 8 个 key,这些 key 之所以会落入同一个桶,是因为它们经过哈希计算后,哈希结果是“一类”的,关于key的定位我们在map的查询和插入中详细说明。在桶内,又会根据 key 计算出来的 hash 值的高 8 位来决定 key 到底落入桶内的哪个位置(一个桶内最多有8个位置)。

bucket内存数据结构可视化如下:

注意到 key 和 value 是各自放在一起的,并不是 key/value/key/value/... 这样的形式。源码里说明这样的好处是在某些情况下可以省略掉 padding字段,节省内存空间。

当 map 的 key 和 value 都不是指针,并且 size 都小于 128 字节的情况下,会把 bmap 标记为不含指针,这样可以避免 gc 时扫描整个 hmap。但是,我们看 bmap 其实有一个 overflow 的字段,是指针类型的,破坏了 bmap 不含指针的设想,这时会把 overflow 移动到 extra 字段来。

map是个指针,底层指向hmap,所以是个引用类型

golang 有三个常用的高级类型 slice 、map、channel, 它们都是 引用类型 ,当引用类型作为函数参数时,可能会修改原内容数据。

golang 中没有引用传递,只有值和指针传递。所以 map 作为函数实参传递时本质上也是值传递,只不过因为 map 底层数据结构是通过指针指向实际的元素存储空间,在被调函数中修改 map,对调用者同样可见,所以 map 作为函数实参传递时表现出了引用传递的效果。

因此,传递 map 时,如果想修改map的内容而不是map本身,函数形参无需使用指针

map 底层数据结构是通过指针指向实际的元素 存储空间 ,这种情况下,对其中一个map的更改,会影响到其他map

map 在没有被修改的情况下,使用 range 多次遍历 map 时输出的 key 和 value 的顺序可能不同。这是 Go 语言的设计者们有意为之,在每次 range 时的顺序被随机化,旨在提示开发者们,Go 底层实现并不保证 map 遍历顺序稳定,请大家不要依赖 range 遍历结果顺序。

map 本身是无序的,且遍历时顺序还会被随机化,如果想顺序遍历 map,需要对 map key 先排序,再按照 key 的顺序遍历 map。

map默认是并发不安全的,原因如下:

Go 官方在经过了长时间的讨论后,认为 Go map 更应适配典型使用场景(不需要从多个 goroutine 中进行安全访问),而不是为了小部分情况(并发访问),导致大部分程序付出加锁代价(性能),决定了不支持。

场景: 2个协程同时读和写,以下程序会出现致命错误:fatal error: concurrent map writes

如果想实现map线程安全,有两种方式:

方式一:使用读写锁 map + sync.RWMutex

方式二:使用golang提供的 sync.Map

sync.map是用读写分离实现的,其思想是空间换时间。和map+RWLock的实现方式相比,它做了一些优化:可以无锁访问read map,而且会优先操作read map,倘若只操作read map就可以满足要求(增删改查遍历),那就不用去操作write map(它的读写都要加锁),所以在某些特定场景中它发生锁竞争的频率会远远小于map+RWLock的实现方式。

golang中map是一个kv对集合。底层使用hash table,用链表来解决冲突 ,出现冲突时,不是每一个key都申请一个结构通过链表串起来,而是以bmap为最小粒度挂载,一个bmap可以放8个kv。在哈希函数的选择上,会在程序启动时,检测 cpu 是否支持 aes,如果支持,则使用 aes hash,否则使用 memhash。

map有3钟初始化方式,一般通过make方式创建

map的创建通过生成汇编码可以知道,make创建map时调用的底层函数是 runtime.makemap 。如果你的map初始容量小于等于8会发现走的是 runtime.fastrand 是因为容量小于8时不需要生成多个桶,一个桶的容量就可以满足

makemap函数会通过 fastrand 创建一个随机的哈希种子,然后根据传入的 hint 计算出需要的最小需要的桶的数量,最后再使用 makeBucketArray 创建用于保存桶的数组,这个方法其实就是根据传入的 B 计算出的需要创建的桶数量在内存中分配一片连续的空间用于存储数据,在创建桶的过程中还会额外创建一些用于保存溢出数据的桶,数量是 2^(B-4) 个。初始化完成返回hmap指针。

找到一个 B,使得 map 的装载因子在正常范围内

Go 语言中读取 map 有两种语法:带 comma 和 不带 comma。当要查询的 key 不在 map 里,带 comma 的用法会返回一个 bool 型变量提示 key 是否在 map 中;而不带 comma 的语句则会返回一个 value 类型的零值。如果 value 是 int 型就会返回 0,如果 value 是 string 类型,就会返回空字符串。

map的查找通过生成汇编码可以知道,根据 key 的不同类型,编译器会将查找函数用更具体的函数替换,以优化效率:

函数首先会检查 map 的标志位 flags。如果 flags 的写标志位此时被置 1 了,说明有其他协程在执行“写”操作,进而导致程序 panic。这也说明了 map 对协程是不安全的。

key经过哈希函数计算后,得到的哈希值如下(主流64位机下共 64 个 bit 位):

m: 桶的个数

从buckets 通过 hash m 得到对应的bucket,如果bucket正在扩容,并且没有扩容完成,则从oldbuckets得到对应的bucket

计算hash所在桶编号:

用上一步哈希值最后的 5 个 bit 位,也就是 01010 ,值为 10,也就是 10 号桶(范围是0~31号桶)

计算hash所在的槽位:

用上一步哈希值哈希值的高8个bit 位,也就是 10010111 ,转化为十进制,也就是151,在 10 号 bucket 中寻找** tophash 值(HOB hash)为 151* 的 槽位**,即为key所在位置,找到了 2 号槽位,这样整个查找过程就结束了。

如果在 bucket 中没找到,并且 overflow 不为空,还要继续去 overflow bucket 中寻找,直到找到或是所有的 key 槽位都找遍了,包括所有的 overflow bucket。

通过上面找到了对应的槽位,这里我们再详细分析下key/value值是如何获取的:

bucket 里 key 的起始地址就是 unsafe.Pointer(b)+dataOffset。第 i 个 key 的地址就要在此基础上跨过 i 个 key 的大小;而我们又知道,value 的地址是在所有 key 之后,因此第 i 个 value 的地址还需要加上所有 key 的偏移。

通过汇编语言可以看到,向 map 中插入或者修改 key,最终调用的是 mapassign 函数。

实际上插入或修改 key 的语法是一样的,只不过前者操作的 key 在 map 中不存在,而后者操作的 key 存在 map 中。

mapassign 有一个系列的函数,根据 key 类型的不同,编译器会将其优化为相应的“快速函数”。

我们只用研究最一般的赋值函数 mapassign 。

map的赋值会附带着map的扩容和迁移,map的扩容只是将底层数组扩大了一倍,并没有进行数据的转移,数据的转移是在扩容后逐步进行的,在迁移的过程中每进行一次赋值(access或者delete)会至少做一次迁移工作。

1.判断map是否为nil

每一次进行赋值/删除操作时,只要oldbuckets != nil 则认为正在扩容,会做一次迁移工作,下面会详细说下迁移过程

根据上面查找过程,查找key所在位置,如果找到则更新,没找到则找空位插入即可

经过前面迭代寻找动作,若没有找到可插入的位置,意味着需要扩容进行插入,下面会详细说下扩容过程

通过汇编语言可以看到,向 map 中删除 key,最终调用的是 mapdelete 函数

删除的逻辑相对比较简单,大多函数在赋值操作中已经用到过,核心还是找到 key 的具体位置。寻找过程都是类似的,在 bucket 中挨个 cell 寻找。找到对应位置后,对 key 或者 value 进行“清零”操作,将 count 值减 1,将对应位置的 tophash 值置成 Empty

再来说触发 map 扩容的时机:在向 map 插入新 key 的时候,会进行条件检测,符合下面这 2 个条件,就会触发扩容:

1、装载因子超过阈值

源码里定义的阈值是 6.5 (loadFactorNum/loadFactorDen),是经过测试后取出的一个比较合理的因子

我们知道,每个 bucket 有 8 个空位,在没有溢出,且所有的桶都装满了的情况下,装载因子算出来的结果是 8。因此当装载因子超过 6.5 时,表明很多 bucket 都快要装满了,查找效率和插入效率都变低了。在这个时候进行扩容是有必要的。

对于条件 1,元素太多,而 bucket 数量太少,很简单:将 B 加 1,bucket 最大数量( 2^B )直接变成原来 bucket 数量的 2 倍。于是,就有新老 bucket 了。注意,这时候元素都在老 bucket 里,还没迁移到新的 bucket 来。新 bucket 只是最大数量变为原来最大数量的 2 倍( 2^B * 2 ) 。

2、overflow 的 bucket 数量过多

在装载因子比较小的情况下,这时候 map 的查找和插入效率也很低,而第 1 点识别不出来这种情况。表面现象就是计算装载因子的分子比较小,即 map 里元素总数少,但是 bucket 数量多(真实分配的 bucket 数量多,包括大量的 overflow bucket)

不难想像造成这种情况的原因:不停地插入、删除元素。先插入很多元素,导致创建了很多 bucket,但是装载因子达不到第 1 点的临界值,未触发扩容来缓解这种情况。之后,删除元素降低元素总数量,再插入很多元素,导致创建很多的 overflow bucket,但就是不会触发第 1 点的规定,你能拿我怎么办?overflow bucket 数量太多,导致 key 会很分散,查找插入效率低得吓人,因此出台第 2 点规定。这就像是一座空城,房子很多,但是住户很少,都分散了,找起人来很困难

对于条件 2,其实元素没那么多,但是 overflow bucket 数特别多,说明很多 bucket 都没装满。解决办法就是开辟一个新 bucket 空间,将老 bucket 中的元素移动到新 bucket,使得同一个 bucket 中的 key 排列地更紧密。这样,原来,在 overflow bucket 中的 key 可以移动到 bucket 中来。结果是节省空间,提高 bucket 利用率,map 的查找和插入效率自然就会提升。

由于 map 扩容需要将原有的 key/value 重新搬迁到新的内存地址,如果有大量的 key/value 需要搬迁,会非常影响性能。因此 Go map 的扩容采取了一种称为“渐进式”的方式,原有的 key 并不会一次性搬迁完毕,每次最多只会搬迁 2 个 bucket。

上面说的 hashGrow() 函数实际上并没有真正地“搬迁”,它只是分配好了新的 buckets,并将老的 buckets 挂到了 oldbuckets 字段上。真正搬迁 buckets 的动作在 growWork() 函数中,而调用 growWork() 函数的动作是在 mapassign 和 mapdelete 函数中。也就是插入或修改、删除 key 的时候,都会尝试进行搬迁 buckets 的工作。先检查 oldbuckets 是否搬迁完毕,具体来说就是检查 oldbuckets 是否为 nil。

如果未迁移完毕,赋值/删除的时候,扩容完毕后(预分配内存),不会马上就进行迁移。而是采取 增量扩容 的方式,当有访问到具体 bukcet 时,才会逐渐的进行迁移(将 oldbucket 迁移到 bucket)

nevacuate 标识的是当前的进度,如果都搬迁完,应该和2^B的长度是一样的

在evacuate 方法实现是把这个位置对应的bucket,以及其冲突链上的数据都转移到新的buckets上。

转移的判断直接通过tophash 就可以,判断tophash中第一个hash值即可

遍历的过程,就是按顺序遍历 bucket,同时按顺序遍历 bucket 中的 key。

map遍历是无序的,如果想实现有序遍历,可以先对key进行排序

为什么遍历 map 是无序的?

如果发生过迁移,key 的位置发生了重大的变化,有些 key 飞上高枝,有些 key 则原地不动。这样,遍历 map 的结果就不可能按原来的顺序了。

如果就一个写死的 map,不会向 map 进行插入删除的操作,按理说每次遍历这样的 map 都会返回一个固定顺序的 key/value 序列吧。但是 Go 杜绝了这种做法,因为这样会给新手程序员带来误解,以为这是一定会发生的事情,在某些情况下,可能会酿成大错。

Go 做得更绝,当我们在遍历 map 时,并不是固定地从 0 号 bucket 开始遍历,每次都是从一个**随机值序号的 bucket 开始遍历,并且是从这个 bucket 的一个 随机序号的 cell **开始遍历。这样,即使你是一个写死的 map,仅仅只是遍历它,也不太可能会返回一个固定序列的 key/value 对了。

go语言中fmt.Println(s0==nil)什么意思?

对于某些类型的变量,如指针、切片、map、接口、通道、函数等,如果从未为它赋过值,则它将具有默认值nil。这句代码的意思就是,如果s0未初始化过,就打印true,否则打印false。

go语言对象的问题?

Get转到定义是如下代码,

func (c *Client) Get(url string) (resp *Response, err error) {

req, err := NewRequest("GET", url, nil)

if err != nil {

return nil, err

}

return c.Do(req)

}

看上去已经有足够多的动作了,并不是你说的只是一个接口啊

go语言循环队列的实现

队列的概念在 顺序队列 中,而使用循环队列的目的主要是规避假溢出造成的空间浪费,在使用循环队列处理假溢出时,主要有三种解决方案

本文提供后两种解决方案。

顺序队和循环队列是一种特殊的线性表,与顺序栈类似,都是使用一组地址连续的存储单元依次存放自队头到队尾的数据元素,同时附设队头(front)和队尾(rear)两个指针,但我们要明白一点,这个指针并不是指针变量,而是用来表示数组当中元素下标的位置。

本文使用切片来完成的循环队列,由于一开始使用三个参数的make关键字创建切片,在输出的结果中不包含nil值(看起来很舒服),而且在验证的过程中发现使用append()函数时切片内置的cap会发生变化,在消除了种种障碍后得到了一个四不像的循环队列,即设置的指针是顺序队列的指针,但实际上进行的操作是顺序队列的操作。最后是对make()函数和append()函数的一些使用体验和小结,队列的应用放在链队好了。

官方描述(片段)

即切片是一个抽象层,底层是对数组的引用。

当我们使用

构建出来的切片的每个位置的值都被赋为interface类型的初始值nil,但是nil值也是有大小的。

而使用

来进行初始化时,虽然生成的切片中不包含nil值,但是无法通过设置的指针变量来完成入队和出队的操作,只能使用append()函数来进行操作

在go语言中,切片是一片连续的内存空间加上长度与容量的标识,比数组更为常用。使用 append 关键字向切片中追加元素也是常见的切片操作

正是基于此,在使用go语言完成循环队列时,首先想到的就是使用make(type, len, cap)关键字方式完成切片初始化,然后使用append()函数来操作该切片,但这一方式出现了很多问题。在使用append()函数时,切片的cap可能会发生变化,用不好就会发生扩容或收缩。最终造成的结果是一个四不像的结果,入队和出队操作变得与指针变量无关,失去了作为循环队列的意义,用在顺序队列还算合适。

参考博客:

Go语言中的Nil

Golang之nil

Go 语言设计与实现


文章标题:go语言中的nil,go语言中的协程
地址分享:http://cxhlcq.cn/article/hcghji.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部