成都创新互联网站制作重庆分公司

python拟合微分函数,python对数函数拟合

python polyfit函数怎么使用

用polyfit(X,Y,1)得到的拟合函数只能得到a,b,但不能得到线性相关系数R^2。如想要得到其线性相关系数,可以用regress(y,X),其使用格式

创新互联专业为企业提供上杭网站建设、上杭做网站、上杭网站设计、上杭网站制作等企业网站建设、网页设计与制作、上杭企业网站模板建站服务,10年上杭做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。

[b,bint,r,rint,stats]

=

regress(y,X);

b——拟合系数

bint——b的置信区间

r——残差值

rint——r的置信区间

stats——检验统计量,第一个就是相关系数

例如:

x=[。。。];y=[。。。]

X=[x

ones(n,1)];

%x的行数(列数)

[b,bint,r,rint,stats]

=

regress(y,X);

如何使用python计算常微分方程?

常用形式

odeint(func, y0, t,args,Dfun)

一般这种形式就够用了。

下面是官方的例子,求解的是

D(D(y1))-t*y1=0

为了方便,采取D=d/dt。如果我们令初值

y1(0) = 1.0/3**(2.0/3.0)/gamma(2.0/3.0)

D(y1)(0) = -1.0/3**(1.0/3.0)/gamma(1.0/3.0)

这个微分方程的解y1=airy(t)。

令D(y1)=y0,就有这个常微分方程组。

D(y0)=t*y1

D(y1)=y0

Python求解该微分方程。

from scipy.integrate import odeint

from scipy.special import gamma, airy

y1_0 = 1.0/3**(2.0/3.0)/gamma(2.0/3.0)

y0_0 = -1.0/3**(1.0/3.0)/gamma(1.0/3.0)

y0 = [y0_0, y1_0]

def func(y, t):

... return [t*y[1],y[0]]

def gradient(y,t):

... return [[0,t],[1,0]]

x = arange(0,4.0, 0.01)

t = x

ychk = airy(x)[0]

y = odeint(func, y0, t)

y2 = odeint(func, y0, t, Dfun=gradient)

print ychk[:36:6]

[ 0.355028 0.339511 0.324068 0.308763 0.293658 0.278806]

print y[:36:6,1]

[ 0.355028 0.339511 0.324067 0.308763 0.293658 0.278806]

print y2[:36:6,1]

[ 0.355028 0.339511 0.324067 0.308763 0.293658 0.278806]

得到的解与精确值相比,误差相当小。

=======================================================================================================

args是额外的参数。

用法请参看下面的例子。这是一个洛仑兹曲线的求解,并且用matplotlib绘出空间曲线图。(来自《python科学计算》)

from scipy.integrate import odeint

import numpy as np

def lorenz(w, t, p, r, b):

# 给出位置矢量w,和三个参数p, r, b 计算出

# dx/dt, dy/dt, dz/dt 的值

x, y, z = w

# 直接与lorenz 的计算公式对应

return np.array([p*(y-x), x*(r-z)-y, x*y-b*z])

t = np.arange(0, 30, 0.01) # 创建时间点

# 调用ode 对lorenz 进行求解, 用两个不同的初始值

track1 = odeint(lorenz, (0.0, 1.00, 0.0), t, args=(10.0, 28.0, 3.0))

track2 = odeint(lorenz, (0.0, 1.01, 0.0), t, args=(10.0, 28.0, 3.0))

# 绘图

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.pyplot as plt

fig = plt.figure()

ax = Axes3D(fig)

ax.plot(track1[:,0], track1[:,1], track1[:,2])

ax.plot(track2[:,0], track2[:,1], track2[:,2])

plt.show()

===========================================================================

scipy.integrate.odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0)

计算常微分方程(组)

使用 FORTRAN库odepack中的lsoda解常微分方程。这个函数一般求解初值问题。

参数:

func : callable(y, t0, ...) 计算y在t0 处的导数。

y0 : 数组 y的初值条件(可以是矢量)

t : 数组 为求出y,这是一个时间点的序列。初值点应该是这个序列的第一个元素。

args : 元组 func的额外参数

Dfun : callable(y, t0, ...) 函数的梯度(Jacobian)。即雅可比多项式。

col_deriv : boolean. True,Dfun定义列向导数(更快),否则Dfun会定义横排导数

full_output : boolean 可选输出,如果为True 则返回一个字典,作为第二输出。

printmessg : boolean 是否打印convergence 消息。

返回: y : array, shape (len(y0), len(t))

数组,包含y值,每一个对应于时间序列中的t。初值y0 在第一排。

infodict : 字典,只有full_output == True 时,才会返回。

字典包含额为的输出信息。

键值:

‘hu’ vector of step sizes successfully used for each time step.

‘tcur’ vector with the value of t reached for each time step. (will always be at least as large as the input times).

‘tolsf’ vector of tolerance scale factors, greater than 1.0, computed when a request for too much accuracy was detected.

‘tsw’ value of t at the time of the last method switch (given for each time step)

‘nst’ cumulative number of time steps

‘nfe’ cumulative number of function evaluations for each time step

‘nje’ cumulative number of jacobian evaluations for each time step

‘nqu’ a vector of method orders for each successful step.

‘imxer’index of the component of largest magnitude in the weighted local error vector (e / ewt) on an error return, -1 otherwise.

‘lenrw’ the length of the double work array required.

‘leniw’ the length of integer work array required.

‘mused’a vector of method indicators for each successful time step: 1: adams (nonstiff), 2: bdf (stiff)

其他参数,官方网站和文档都没有明确说明。相关的资料,暂时也找不到。

python里怎么样求解微分方程

有很多大学生问我,学习python有什么用呢?我说:你至少可以用来解微分方程,如下面的例子,就是解决微分方程:

y"+a*y'+b*y=0 

代码如下:

[python] view plain copy

#y"+a*y'+b*y=0

from scipy.integrate import odeint

from pylab import *

def deriv(y,t):        # 返回值是y和y的导数组成的数组

a = -2.0

b = -0.1

return array([ y[1], a*y[0]+b*y[1] ])

time = linspace(0.0,50.0,1000)

yinit = array([0.0005,0.2])     # 初值

y = odeint(deriv,yinit,time)

figure()

plot(time,y[:,0],label='y')    #y[:,0]即返回值的第一列,是y的值。label是为了显示legend用的。

plot(time,y[:,1],label="y'")     #y[:,1]即返回值的第二列,是y’的值

xlabel('t')

ylabel('y')

legend()

show()

输出结果如下:

python中用polyfit拟合出的函数怎么能直接调用?

首先分两种情况:

1.交互窗口处执行:这个时候由于python的强制缩进,因此想要结束函数的定义只需要按两下enter即可。

2.在.py文件中编写,结束函数只需要不再缩进即可

调用函数方法相同,把函数名及参数写上就可以了,如果有返回值可以

r=functionA(var1)

附:测试代码(python3运行通过)

# -*- coding:utf-8 -*-

#author:zfxcx

def pt():

print("hello")

pt()

python 的scipy 里的 odeint 这个求微分方程的函数怎么用啊

scipy.integrate.odeint(func,y0,t,args=(),dfun=none,col_deriv=0,full_output=0,ml=none,mu=none,rtol=none,atol=none,tcrit=none,h0=0.0,hmax=0.0,hmin=0.0,ixpr=0,mxstep=0,mxhnil=0,mxordn=12,mxords=5,printmessg=0)

实际使用中,还是主要使用前三个参数,即微分方程的描写函数、初值和需要求解函数值对应的的时间点。接收数组形式。这个函数,要求微分方程必须化为标准形式,即dy/dt=f(y,t,)。

fromscipyimportodeint

y=odeint(dy/dt=r*y*(1-y/k),y(0)=0.1,t)

对于微分方程全还给老师了,

Python 中的函数拟合

很多业务场景中,我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势。(比如用户的留存变化、付费变化等)

本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合。

通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可。

运行结果:

对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合,它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可。

运行结果:


分享文章:python拟合微分函数,python对数函数拟合
文章转载:http://cxhlcq.cn/article/hceioi.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部