成都创新互联网站制作重庆分公司

Hive的示例分析

这篇文章主要为大家展示了“Hive的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Hive的示例分析”这篇文章吧。

你所需要的网站建设服务,我们均能行业靠前的水平为你提供.标准是产品质量的保证,主要从事成都网站建设、成都做网站、企业网站建设、移动网站建设、网页设计、成都品牌网站建设、网页制作、做网站、建网站。创新互联公司拥有实力坚强的技术研发团队及素养的视觉设计专才。

Hive定义

Hive是建立在 Hadoop 上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。Hive 定义了简单的类 SQL 查询语言,称为 HQL,它允许熟悉 SQL 的用户查询数据。同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理内建的 mapper 和 reducer 无法完成的复杂的分析工作。

Hive 没有专门的数据格式。 Hive 可以很好的工作在 Thrift之上,控制分隔符,也允许用户指定数据格式。

所以当我们提到Hive的时候,我们谈论的是一种架构,或者是数据仓库,疑惑代指Hive SQL,叫法上并没有什么特殊的限制要求。

Hive的适用场景

既然上面提到了Hive与传统的数据库不一样,那么Hive肯定有它独特的地方:

Hive 构建在基于静态批处理的Hadoop 之上,Hadoop 通常都有较高的延迟并且在作业提交和调度的时候需要大量的开销。因此,Hive 并不能够在大规模数据集上实现低延迟快速的查询,例如,Hive 在几百MB 的数据集上执行查询一般有分钟级的时间延迟。因此,Hive 并不适合那些需要低延迟的应用,例如,联机事务处理(OLTP)。Hive 查询操作过程严格遵守Hadoop MapReduce 的作业执行模型,Hive 将用户的HiveQL 语句通过解释器转换为MapReduce 作业提交到Hadoop 集群上,Hadoop 监控作业执行过程,然后返回作业执行结果给用户。Hive 并非为联机事务处理而设计,Hive 并不提供实时的查询和基于行级的数据更新操作。Hive 的最佳使用场合是大数据集的批处理作业,例如,网络日志分析。

Hive技术特点

Hive 是一种底层封装了Hadoop数据仓库处理工具使用类SQL 的HiveQL 语言实现数据查询,所有Hive 的数据都存储在Hadoop 兼容的文件系统(例如,Amazon S3、HDFS)中。Hive 在加载数据过程中不会对数据进行任何的修改,只是将数据移动到HDFS 中Hive 设定的目录下,因此,Hive 不支持对数据的改写和添加,所有的数据都是在加载的时候确定的。Hive 的设计特点如下。

● 支持索引,加快数据查询。

● 不同的存储类型,例如,纯文本文件、HBase 中的文件。

● 将元数据保存在关系数据库中,大大减少了在查询过程中执行语义检查的时间。

● 可以直接使用存储在Hadoop 文件系统中的数据。

● 内置大量用户函数UDF 来操作时间、字符串和其他的数据挖掘工具,支持用户扩展UDF 函数来完成内置函数无法实现的操作。

● 类SQL 的查询方式,将SQL 查询转换为MapReduce 的job 在Hadoop集群上执行。

Hive的体系结构

用户接口

用户接口主要有三个:CLI,Client 和 WUI。其中最常用的是 CLI,Cli 启动的时候,会同时启动一个 Hive 副本。Client 是 Hive 的客户端,用户连接至 Hive Server。在启动 Client 模式的时候,需要指出 Hive Server 所在节点,并且在该节点启动 Hive Server。 WUI 是通过浏览器访问 Hive。

元数据存储

Hive 将元数据存储在数据库中,如 MySQL、derby。Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。

解释器、编译器、优化器、执行器

解释器、编译器、优化器完成 HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在 HDFS 中,并在随后由 MapReduce 调用执行。

Hadoop

Hive 的数据存储在 HDFS 中,大部分的查询由 MapReduce 完成(包含 * 的查询,比如 select * from tbl 不会生成 MapReduce 任务)。

Hive的数据存储情况

首先,Hive 没有专门的数据存储格式,也没有为数据建立索引,用户可以非常自由的组织 Hive 中的表,只需要在创建表的时候告诉 Hive 数据中的列分隔符和行分隔符,Hive 就可以解析数据

其次,Hive 中所有的数据都存储在 HDFS 中,Hive 中包含以下数据模型:表(Table),外部表(External Table),分区(Partition),桶(Bucket)。

Hive 中的 Table 和数据库中的 Table 在概念上是类似的,每一个 Table 在 Hive 中都有一个相应的目录存储数据。例如,一个表 pvs,它在 HDFS 中的路径为:/wh/pvs,其中,wh 是在 hive-site.xml 中由 ${hive.metastore.warehouse.dir} 指定的数据仓库的目录,所有的 Table 数据(不包括 External Table)都保存在这个目录中。

Partition 对应于数据库中的 Partition 列的密集索引,但是 Hive 中 Partition 的组织方式和数据库中的很不相同。在 Hive 中,表中的一个 Partition 对应于表下的一个目录,所有的 Partition 的数据都存储在对应的目录中。例如:pvs 表中包含 ds 和 city 两个 Partition,则对应于 ds = 20090801, ctry = US 的 HDFS 子目录为:/wh/pvs/ds=20090801/ctry=US;对应于 ds = 20090801, ctry = CA 的 HDFS 子目录为;/wh/pvs/ds=20090801/ctry=CA

Buckets 对指定列计算 hash,根据 hash 值切分数据,目的是为了并行,每一个 Bucket 对应一个文件。将 user 列分散至 32 个 bucket,首先对 user 列的值计算 hash,对应 hash 值为 0 的 HDFS 目录为:/wh/pvs/ds=20090801/ctry=US/part-00000;hash 值为 20 的 HDFS 目录为:/wh/pvs/ds=20090801/ctry=US/part-00020

External Table 指向已经在 HDFS 中存在的数据,可以创建 Partition。它和 Table 在元数据的组织上是相同的,而实际数据的存储则有较大的差异。

Table 的创建过程和数据加载过程(这两个过程可以在同一个语句中完成),在加载数据的过程中,实际数据会被移动到数据仓库目录中;之后对数据对访问将会直接在数据仓库目录中完成。删除表时,表中的数据和元数据将会被同时删除。

  • External Table 只有一个过程,加载数据和创建表同时完成(CREATE EXTERNAL TABLE ……LOCATION),实际数据是存储在 LOCATION 后面指定的 HDFS 路径中,并不会移动到数据仓库目录中。当删除一个 External Table 时,仅删除元数据,表中的数据不会真正被删除。

以上是“Hive的示例分析”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!


网站栏目:Hive的示例分析
标题来源:http://cxhlcq.cn/article/gihdjg.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部