成都创新互联网站制作重庆分公司

求一个数阶乘末尾0的个数

#include
using namespace std;
//给定一个整数N,那么N的阶乘末尾有几个0?N=10,N!=3628800,末尾有2个0
//1.如果我们从“哪些数相乘能得到 10”这个角度来考虑,问题就变得简单了。
//首先考虑,如果 N!= K×10M,且 K 不能被 10 整除,那么 N!末尾有 M 个 0。再考虑
//对 N!进行质因数分解,N!=(2x)×(3y)×(5z)…,由于 10 = 2×5,所以 M 只跟 X 和 Z
//相关,每一对 2 和 5 相乘可以得到一个 10,于是 M = min(X, Z)。不难看出 X 大于等于 Z,
//因为能被 2 整除的数出现的频率比能被 5 整除的数高得多,所以把公式简化为 M = Z。
//根据上面的分析,只要计算出 Z 的值,就可以得到 N!末尾 0 的个数。 
//最直接的方法,就是计算 i(i =1, 2, …, N)的因式分解中 5 的指数,然后求和
int count1(int n)
{
	int ret=0;
	int j=0;
	for(int i=1;i<=n;++i)
	{
		j=i;
		while(j%5==0)
		{
			++ret;
			j/=5;
		}
	}
	return ret;
}
//2.公式:Z = [N/5] +[N/52] +[N/53] + …(不用担心这会是一个无穷的运算,因为总存在一
//个 K,使得 5K > N,[N/5K]=0。)
//公式中,[N/5]表示不大于 N 的数中 5 的倍数贡献一个 5,[N/52]表示不大于 N 的数中 52
//的倍数再贡献一个 5
int count2(int n)
{
	int ret=0;
	while(n)
	{
		ret+=n/5;
		n/=5;
	}
	return ret;
}
int main()
{
	cout<
#include
using namespace std;
//求N!的二进制表示中最低位1的位置给定一个整数 N,求 N!二进制表
//示的最低位 1 在第几位?例如:给定 N = 3,N!= 6,那么 N!的二进制表示(1 010)的最低
//位 1 在第二位。 

//思路:判断最后一个二进制位是否为 0,若为 0,则将此二进制数右移一位,即为商值(为什
//么);反之,若为 1,则说明这个二进制数是奇数,无法被 2 整除(这又是为什么)。
//所以,这个问题实际上等同于求 N!含有质因数 2 的个数。即答案等于 N!含有质因数
//2 的个数加 1 
//由于 N! 中含有质因数 2 的个数,等于 N/2 + N/4 + N/8 + N/16 + …1,
int lowestOne(int N)
{
	int Ret = 1;//+最后的1 
	while(N)
	{
		N >>= 1;
		Ret += N;
	}
	return Ret;
}
//N!含有质因数 2 的个数,还等于 N 减去 N 的二进制表示中 1 的数目。我们还可以通过
//这个规律来求解。
 int count3(int v)
 {
 	int num=0;
 	while(v)
 	{
 		v&=(v-1);
 		++num;
	}
	 return num;
} 
int lowestOneCount(int N)
{
	return N-count3(N)+1;
}
int main()
{
	cout<            
            
                        
当前文章:求一个数阶乘末尾0的个数
标题链接:http://cxhlcq.cn/article/ggipsj.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部