成都创新互联网站制作重庆分公司

如何进行python的merge理解

如何进行python的merge理解,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。

创新互联公司是一家从事企业网站建设、网站设计、成都网站设计、行业门户网站建设、网页设计制作的专业网络公司,拥有经验丰富的网站建设工程师和网页设计人员,具备各种规模与类型网站建设的实力,在网站建设领域树立了自己独特的设计风格。自公司成立以来曾独立设计制作的站点上千。

merge

pandas的merge方法提供了一种类似于SQL的内存链接操作,官网文档提到它的性能会比其他开源语言的数据操作(例如R)要高效。

和SQL语句的对比可以看这里

merge的参数

on:列名,join用来对齐的那一列的名字,用到这个参数的时候一定要保证左表和右表用来对齐的那一列都有相同的列名。

left_on:左表对齐的列,可以是列名,也可以是和dataframe同样长度的arrays。

right_on:右表对齐的列,可以是列名,也可以是和dataframe同样长度的arrays。

left_index/ right_index: 如果是True的haunted以index作为对齐的key

how:数据融合的方法。

sort:根据dataframe合并的keys按字典顺序排序,默认是,如果置false可以提高表现。

merge的默认合并方法:
    merge用于表内部基于 index-on-index 和 index-on-column(s) 的合并,但默认是基于index来合并。12

1.1 复合key的合并方法

使用merge的时候可以选择多个key作为复合可以来对齐合并。1

1.1.1 通过on指定数据合并对齐的列

In [41]: left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
   ....:                      'key2': ['K0', 'K1', 'K0', 'K1'],
   ....:                      'A': ['A0', 'A1', 'A2', 'A3'],
   ....:                      'B': ['B0', 'B1', 'B2', 'B3']})
   ....: 

In [42]: right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
   ....:                       'key2': ['K0', 'K0', 'K0', 'K0'],
   ....:                       'C': ['C0', 'C1', 'C2', 'C3'],
   ....:                       'D': ['D0', 'D1', 'D2', 'D3']})
   ....: 

In [43]: result = pd.merge(left, right, on=['key1', 'key2'])1234567891011121312345678910111213

如何进行python的merge理解 
没有指定how的话默认使用inner方法。

how的方法有:

left

只保留左表的所有数据

In [44]: result = pd.merge(left, right, how='left', on=['key1', 'key2'])11

如何进行python的merge理解

right

只保留右表的所有数据

In [45]: result = pd.merge(left, right, how='right', on=['key1', 'key2'])11

如何进行python的merge理解

outer

保留两个表的所有信息

In [46]: result = pd.merge(left, right, how='outer', on=['key1', 'key2'])11

如何进行python的merge理解

inner

只保留两个表中公共部分的信息

In [47]: result = pd.merge(left, right, how='inner', on=['key1', 'key2'])11

如何进行python的merge理解

思考:如果 left,right 的键值对名称不一致,应该如何关联

看完上述内容,你们掌握如何进行python的merge理解的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联行业资讯频道,感谢各位的阅读!


分享文章:如何进行python的merge理解
本文链接:http://cxhlcq.cn/article/geppoo.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部