成都创新互联网站制作重庆分公司

Java线程池执行原理是什么-创新互联

本篇内容介绍了“Java线程池执行原理是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

成都服务器托管,成都创新互联提供包括服务器租用、成都机柜租用、带宽租用、云主机、机柜租用、主机租用托管、CDN网站加速、域名注册等业务的一体化完整服务。电话咨询:18982081108

线程池状态

首先认识两个贯穿线程池代码的参数:

runState:线程池运行状态  workerCount:工作线程的数量

线程池用一个32位的int来同时保存runState和workerCount,其中高3位是runState,其余29位是workerCount。代码中会反复使用runStateOf和workerCountOf来获取runState和workerCount。

private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));private static final int COUNT_BITS = Integer.SIZE - 3;private static final int CAPACITY = (1 << COUNT_BITS) - 1;// 线程池状态private static final int RUNNING = -1 << COUNT_BITS;private static final int SHUTDOWN = 0 << COUNT_BITS;private static final int STOP = 1 << COUNT_BITS;private static final int TIDYING = 2 << COUNT_BITS;private static final int TERMINATED = 3 << COUNT_BITS;// ctl操作private static int runStateOf(int c) { return c & ~CAPACITY; }private static int workerCountOf(int c) { return c & CAPACITY; }private static int ctlOf(int rs, int wc) { return rs | wc; }

RUNNING:可接收新任务,可执行等待队列里的任务  SHUTDOWN:不可接收新任务,可执行等待队列里的任务  STOP:不可接收新任务,不可执行等待队列里的任务,并且尝试终止所有在运行任务  TIDYING:所有任务已经终止,执行terminated()  TERMINATED:terminated()执行完成

线程池状态默认从RUNNING开始流转,到状态TERMINATED结束,中间不需要经过每一种状态,但不能让状态回退。下面是状态变化可能的路径和变化条件:

Worker的创建

线程池是由Worker类负责执行任务,Worker继承了AbstractQueuedSynchronizer,引出了Java并发框架的核心AQS。

AbstractQueuedSynchronizer,简称AQS,是Java并发包里一系列同步工具的基础实现,原理是根据状态位来控制线程的入队阻塞、出队唤醒来处理同步。

AQS不会在这里展开讨论,只需要知道Worker包装了Thread,由它去执行任务。

调用execute将会根据线程池的情况创建Worker,可以归纳出下图四种情况:

public void execute(Runnable command) {if (command == null)throw new NullPointerException();int c = ctl.get();//1if (workerCountOf(c) < corePoolSize) {if (addWorker(command, true))return;c = ctl.get();}//2if (isRunning(c) && workQueue.offer(command)) {int recheck = ctl.get();if (! isRunning(recheck) && remove(command))//3reject(command);else if (workerCountOf(recheck) == 0)//4addWorker(null, false);}//5else if (!addWorker(command, false))//6reject(command);}

标记1对应第一种情况,要留意addWorker传入了core,core=true为corePoolSize,core=false为maximumPoolSize,

新增时需要检查workerCount是否超过允许的较大值。

标记2对应第二种情况,检查线程池是否在运行,并且将任务加入等待队列。标记3再检查一次线程池状态,如果线程池忽然处于非运行状态,那就将等待队列刚加的任务删掉,再交给RejectedExecutionHandler处理。标记4发现没有worker,就先补充一个空任务的worker。

标记5对应第三种情况,等待队列不能再添加任务了,调用addWorker添加一个去处理。

标记6对应第四种情况,addWorker的core传入false,返回调用失败,代表workerCount已经超出maximumPoolSize,那就交给RejectedExecutionHandler处理。

private boolean addWorker(Runnable firstTask, boolean core) {//1retry:for (;;) {int c = ctl.get();int rs = runStateOf(c);// Check if queue empty only if necessary.if (rs >= SHUTDOWN &&! (rs == SHUTDOWN &&firstTask == null &&! workQueue.isEmpty()))return false;for (;;) {int wc = workerCountOf(c);if (wc >= CAPACITY ||wc >= (core ? corePoolSize : maximumPoolSize))return false;if (compareAndIncrementWorkerCount(c))break retry;c = ctl.get(); // Re-read ctlif (runStateOf(c) != rs)continue retry;// else CAS failed due to workerCount change; retry inner loop}}//2boolean workerStarted = false;boolean workerAdded = false;Worker w = null;try {w = new Worker(firstTask);final Thread t = w.thread;if (t != null) {final ReentrantLock mainLock = this.mainLock;mainLock.lock();try {// Recheck while holding lock.// Back out on ThreadFactory failure or if// shut down before lock acquired.int rs = runStateOf(ctl.get());if (rs < SHUTDOWN ||(rs == SHUTDOWN && firstTask == null)) {if (t.isAlive()) // precheck that t is startablethrow new IllegalThreadStateException();workers.add(w);int s = workers.size();if (s > largestPoolSize)largestPoolSize = s;workerAdded = true;}} finally {mainLock.unlock();}if (workerAdded) {t.start();workerStarted = true;}}} finally {if (! workerStarted)addWorkerFailed(w);}return workerStarted;}

标记1的第一段代码,目的很简单,是为workerCount加一。至于为什么代码写了这么长,是因为线程池的状态在不断

变化,并发环境下需要保证变量的同步性。外循环判断线程池状态、任务非空和队列非空,内循环使用CAS机制保证workerCount正确地递增。不了解CAS可以看认识非阻塞的同步机制CAS,后续增减workerCount都会使用CAS。

标记2的第二段代码,就比较简单。创建一个新Worker对象,将Worker添加进workers里(Set集合)。成功添加后,启动worker里的线程。在finally里判断线程是否启动成功,不成功直接调用addWorkerFailed。

private void addWorkerFailed(Worker w) {final ReentrantLock mainLock = this.mainLock;mainLock.lock();try {if (w != null)workers.remove(w);decrementWorkerCount();tryTerminate();} finally {mainLock.unlock();}}

addWorkerFailed将减少已经递增的workerCount,并且调用tryTerminate结束线程池。

Worker的执行

Worker(Runnable firstTask) {setState(-1); // inhibit interrupts until runWorkerthis.firstTask = firstTask;this.thread = getThreadFactory().newThread(this);}public void run() {runWorker(this);}

Worker在构造函数里采用ThreadFactory创建Thread,在run方法里调用了runWorker,看来是真正执行任务的地方。

final void runWorker(Worker w) {Thread wt = Thread.currentThread();Runnable task = w.firstTask;w.firstTask = null;w.unlock(); // allow interruptsboolean completedAbruptly = true;try {//1while (task != null || (task = getTask()) != null) {w.lock();//2if ((runStateAtLeast(ctl.get(), STOP) ||(Thread.interrupted() &&runStateAtLeast(ctl.get(), STOP))) &&!wt.isInterrupted())wt.interrupt();try {//3beforeExecute(wt, task);Throwable thrown = null;try {task.run();} catch (RuntimeException x) {thrown = x; throw x;} catch (Error x) {thrown = x; throw x;} catch (Throwable x) {thrown = x; throw new Error(x);} finally {afterExecute(task, thrown);}} finally {task = null;//4w.completedTasks++;w.unlock();}}completedAbruptly = false; //5} finally {//6processWorkerExit(w, completedAbruptly);}}

标记1进入循环,从getTask获取要执行的任务,直到返回null。这里达到了线程复用的效果,让线程处理多个任务。

标记2是一个比较复杂的判断,保证了线程池在STOP状态下线程是中断的,非STOP状态下线程没有被中断。如果你不了解Java的中断机制,看如何正确结束Java线程这篇。

标记3调用了run方法,真正执行了任务。执行前后提供了beforeExecute和afterExecute两个方法,由子类实现。

标记4里的completedTasks统计worker执行了多少任务,最后累加进completedTaskCount变量,可以调用相应方法返回一些统计信息。

标记5的变量completedAbruptly表示worker是否异常终止,执行到这里代表执行正常,后续的方法需要这个变量。

标记6调用processWorkerExit结束,后面会分析。

接着来看worker从等待队列获取任务的getTask方法:

private Runnable getTask() {boolean timedOut = false; // Did the last poll() time out?for (;;) {int c = ctl.get();int rs = runStateOf(c);//1// Check if queue empty only if necessary.if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {decrementWorkerCount();return null;}int wc = workerCountOf(c);//2// Are workers subject to culling?boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;if ((wc > maximumPoolSize || (timed && timedOut))&& (wc > 1 || workQueue.isEmpty())) {if (compareAndDecrementWorkerCount(c))return null;continue;}//3try {Runnable r = timed ?workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :workQueue.take();if (r != null)return r;timedOut = true;} catch (InterruptedException retry) {timedOut = false;}}}

标记1检查线程池的状态,这里就体现出SHUTDOWN和STOP的区别。如果线程池是SHUTDOWN状态,还会先处理完等待队列的任务;如果是STOP状态,就不再处理等待队列里的任务了。

标记2先看allowCoreThreadTimeOut这个变量,false时worker空闲,也不会结束;true时,如果worker空闲超过keepAliveTime,就会结束。接着是一个很复杂的判断,好难转成文字描述,自己看吧。注意一下wc>maximumPoolSize,出现这种可能是在运行中调用setMaximumPoolSize,还有wc>1,在等待队列非空时,至少保留一个worker。

标记3是从等待队列取任务的逻辑,根据timed分为等待keepAliveTime或者阻塞直到有任务。

最后来看结束worker需要执行的操作:

private void processWorkerExit(Worker w, boolean completedAbruptly) {//1if (completedAbruptly) // If abrupt, then workerCount wasn't adjusteddecrementWorkerCount();//2final ReentrantLock mainLock = this.mainLock;mainLock.lock();try {completedTaskCount += w.completedTasks;workers.remove(w);} finally {mainLock.unlock();}//3tryTerminate();int c = ctl.get();//4if (runStateLessThan(c, STOP)) {if (!completedAbruptly) {int min = allowCoreThreadTimeOut ? 0 : corePoolSize;if (min == 0 && ! workQueue.isEmpty())min = 1;if (workerCountOf(c) >= min)return; // replacement not needed}addWorker(null, false);}}

正常情况下,在getTask里就会将workerCount减一。标记1处用变量completedAbruptly判断worker是否异常退出,如果是,需要补充对workerCount的减一。

标记2将worker处理任务的数量累加到总数,并且在集合workers中去除。

标记3尝试终止线程池,后续会研究。

标记4处理线程池还是RUNNING或SHUTDOWN状态时,如果worker是异常结束,那么会直接addWorker。如果allowCoreThreadTimeOut=true,并且等待队列有任务,至少保留一个worker;如果allowCoreThreadTimeOut=false,workerCount不少于corePoolSize。

总结一下worker:线程池启动后,worker在池内创建,包装了提交的Runnable任务并执行,执行完就等待下一个任务,不再需要时就结束。

线程池的关闭

线程池的关闭不是一关了事,worker在池里处于不同状态,必须安排好worker的”后事”,才能真正释放线程池。ThreadPoolExecutor提供两种方法关闭线程池:

shutdown:不能再提交任务,已经提交的任务可继续运行;  shutdownNow:不能再提交任务,已经提交但未执行的任务不能运行,在运行的任务可继续运行,但会被中断,返回已经提交但未执行的任务。

public void shutdown() {final ReentrantLock mainLock = this.mainLock;mainLock.lock();try {checkShutdownAccess(); //1 安全策略机制advanceRunState(SHUTDOWN); //2interruptIdleWorkers(); //3onShutdown(); //4 空方法,子类实现} finally {mainLock.unlock();}tryTerminate(); //5}

shutdown将线程池切换到SHUTDOWN状态,并调用interruptIdleWorkers请求中断所有空闲的worker,最后调用tryTerminate尝试结束线程池。

public List shutdownNow() {List tasks;final ReentrantLock mainLock = this.mainLock;mainLock.lock();try {checkShutdownAccess();advanceRunState(STOP);interruptWorkers();tasks = drainQueue(); //1} finally {mainLock.unlock();}tryTerminate();return tasks;}

shutdownNow和shutdown类似,将线程池切换为STOP状态,中断目标是所有worker。drainQueue会将等待队列里未执行的任务返回。

interruptIdleWorkers和interruptWorkers实现原理都是遍历workers集合,中断条件符合的worker。

上面的代码多次出现调用tryTerminate,这是一个尝试将线程池切换到TERMINATED状态的方法。

final void tryTerminate() {for (;;) {int c = ctl.get();//1if (isRunning(c) ||runStateAtLeast(c, TIDYING) ||(runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))return;//2if (workerCountOf(c) != 0) { // Eligible to terminateinterruptIdleWorkers(ONLY_ONE);return;}//3final ReentrantLock mainLock = this.mainLock;mainLock.lock();try {if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {try {terminated();} finally {ctl.set(ctlOf(TERMINATED, 0));termination.signalAll();}return;}} finally {mainLock.unlock();}// else retry on failed CAS}}

标记1检查线程池状态,下面几种情况,后续操作都没有必要,直接return。

RUNNING(还在运行,不能停)  TIDYING或TERMINATED(已经没有在运行的worker)  SHUTDOWN并且等待队列非空(执行完才能停)

标记2在worker非空的情况下又调用了interruptIdleWorkers,你可能疑惑在shutdown时已经调用过了,为什么又调用,而且每次只中断一个空闲worker?

你需要知道,shutdown时worker可能在执行中,执行完阻塞在队列的take,不知道要结束,所有要补充调用interruptIdleWorkers。每次只中断一个是因为processWorkerExit时,还会执行tryTerminate,自动中断下一个空闲的worker。

标记3是最终的状态切换。线程池会先进入TIDYING状态,再进入TERMINATED状态,中间提供了terminated这个空方法供子类实现。

调用关闭线程池方法后,需要等待线程池切换到TERMINATED状态。awaitTermination检查限定时间内线程池是否进入TERMINATED状态,代码如下:

public boolean awaitTermination(long timeout, TimeUnit unit)throws InterruptedException {long nanos = unit.toNanos(timeout);final ReentrantLock mainLock = this.mainLock;mainLock.lock();try {for (;;) {if (runStateAtLeast(ctl.get(), TERMINATED))return true;if (nanos <= 0)return false;nanos = termination.awaitNanos(nanos);}} finally {mainLock.unlock();}}

“Java线程池执行原理是什么”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!


网站标题:Java线程池执行原理是什么-创新互联
URL网址:http://cxhlcq.cn/article/dpidhi.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部