成都创新互联网站制作重庆分公司

go语言超时机制 go语言 效率

go语言select的作用

Go里面提供了一个关键字select,通过select可以监听channel上的数据流动。

创新互联公司服务项目包括信阳网站建设、信阳网站制作、信阳网页制作以及信阳网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,信阳网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到信阳省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!

select的用法与switch语言非常类似,由select开始一个新的选择块,每个选择条件由case语句来描述。

与switch语句相比, select有比较多的限制,其中最大的一条限制就是每个case语句里必须是一个IO操作,大致的结构如下:

在一个select语句中,Go语言会按顺序从头至尾评估每一个发送和接收的语句。

如果其中的任意一语句可以继续执行(即没有被阻塞),那么就从那些可以执行的语句中任意选择一条来使用。

如果没有任意一条语句可以执行(即所有的通道都被阻塞),那么有两种可能的情况:

如果给出了default语句,那么就会执行default语句,同时程序的执行会从select语句后的语句中恢复。

如果没有default语句,那么select语句将被阻塞,直到至少有一个通信可以进行下去

有时候会出现goroutine阻塞的情况,那么我们如何避免整个程序进入阻塞的情况呢?我们可以利用select来设置超时,通过如下的方式实现:

select总结:

作用: 用来监听 channel 上的数据流动方向。 读?写?

select实现fibonacci数列:

go语言聊天室实现(七)websocket收消息设置

上一节中,我们为每个连接都创建了一个goroutine来读取其中的消息,现在我们将这个读取消息的方法实现一下。

我们在application目录下新建controllers目录,并在其中创建一个MessageController.go文件。

首先我们新建一个MessageController的结构体,内容如下

这个结构体包括两个内容,一个是我们将连接放在数组之后,返回的索引,另一个是连接本身.

这个是具体的方法。

我们首先设置了一下读消息的大小、超时时间以及超时后需要的操作。

超时时间如果设置为0,那么就是永不超时。之前在这里直接写0,被告知需要传一个time.Time类型的数据。最终谷歌后才得到了这个值time.Time{}为"0001-01-01 00:00:00 +0000 UTC"。

我们将用户手法消息的内容定义为一个结构体,然后将用户的订阅信息的json通过json.unmarshal转换成这个结构体。

之后的switch操作与我们在Swoole中的操作基本雷同,在查询到login之后,调用service中 的login方法来进行注册。

下一节中我们再介绍具体的注册逻辑。

Go语言之Context

golang在1.6.2的时候还没有自己的context,在1.7的版本中就把golang.org/x/net/context包被加入到了官方的库中。中文译作“上下文”,它主要包含了goroutine 的运行状态、环境等信息。

context 主要用来在 goroutine 之间传递上下文信息,包括:同步信号、超时时间、截止时间、请求相关值等。

该接口定义了四个需要实现的方法:

如果有个网络请求Request,然后这个请求又可以开启多个goroutine做一些事情,当这个网络请求出现异常和超时时,这个请求结束了,这时候就可以通过context来跟踪这些goroutine,并且通过Context来取消他们,然后系统才可回收所占用的资源。

为了更方便的创建Context,包里头定义了Background来作为所有Context的根,它是一个emptyCtx的实例。

Background返回一个非空的Context。它永远不会被取消。它通常用来初始化和测试使用,作为一个顶层的context,也就是说一般我们创建的context都是基于Background。

TODO返回一个非空的Context。当不清楚要使用哪个上下文的时候可以使用TODO。

他们两个本质上都是emptyCtx结构体类型,是一个不可取消,没有设置截止时间,没有携带任何值的Context。

有了如上的根Context,那么是如何衍生更多的子Context的呢?这就要靠context包为我们提供的With系列的函数了。

通过这些函数,就创建了一颗Context树,树的每个节点都可以有任意多个子节点,节点层级可以有任意多个。

WithCancel函数,最常用的派生 context 方法。该方法接受一个父 context。父 context 可以是一个 background context 或其他 context。

WithDeadline函数,该方法会创建一个带有 deadline 的 context。当 deadline 到期后,该 context 以及该 context 的可能子 context 会受到 cancel 通知。另外,如果 deadline 前调用 cancelFunc 则会提前发送取消通知。

WithTimeout和WithDeadline基本上一样,这个表示是超时自动取消,是多少时间后自动取消Context的意思。

WithValue函数和取消Context无关,它是为了生成一个绑定了一个键值对数据的Context,这个绑定的数据可以通过Context.Value方法访问到,一般我们想要通过上下文来传递数据时,可以通过这个方法,如我们需要tarce追踪系统调用栈的时候。

使用Context的程序应遵循以下规则,以使各个包之间的接口保持一致:

1.不要将 Context 塞到结构体里。直接将 Context 类型作为函数的第一参数,而且一般都命名为 ctx。

2.不要向函数传入一个 nil 的 context,如果你实在不知道传什么,标准库给你准备好了一个 context:todo。

3.不要把本应该作为函数参数的类型塞到 context 中,context 存储的应该是一些共同的数据。例如:登陆的 session、cookie 等。

4.同一个 context 可能会被传递到多个 goroutine,别担心,context 是并发安全的。

golang使用Nsq

1. 介绍

最近在研究一些消息中间件,常用的MQ如RabbitMQ,ActiveMQ,Kafka等。NSQ是一个基于Go语言的分布式实时消息平台,它基于MIT开源协议发布,由bitly公司开源出来的一款简单易用的消息中间件。

官方和第三方还为NSQ开发了众多客户端功能库,如官方提供的基于HTTP的nsqd、Go客户端go-nsq、Python客户端pynsq、基于Node.js的JavaScript客户端nsqjs、异步C客户端libnsq、Java客户端nsq-java以及基于各种语言的众多第三方客户端功能库。

1.1 Features

1). Distributed

NSQ提供了分布式的,去中心化,且没有单点故障的拓扑结构,稳定的消息传输发布保障,能够具有高容错和HA(高可用)特性。

2). Scalable易于扩展

NSQ支持水平扩展,没有中心化的brokers。内置的发现服务简化了在集群中增加节点。同时支持pub-sub和load-balanced 的消息分发。

3). Ops Friendly

NSQ非常容易配置和部署,生来就绑定了一个管理界面。二进制包没有运行时依赖。官方有Docker image。

4.Integrated高度集成

官方的 Go 和 Python库都有提供。而且为大多数语言提供了库。

1.2 组件

1.3 拓扑结构

NSQ推荐通过他们相应的nsqd实例使用协同定位发布者,这意味着即使面对网络分区,消息也会被保存在本地,直到它们被一个消费者读取。更重要的是,发布者不必去发现其他的nsqd节点,他们总是可以向本地实例发布消息。

NSQ

首先,一个发布者向它的本地nsqd发送消息,要做到这点,首先要先打开一个连接,然后发送一个包含topic和消息主体的发布命令,在这种情况下,我们将消息发布到事件topic上以分散到我们不同的worker中。

事件topic会复制这些消息并且在每一个连接topic的channel上进行排队,在我们的案例中,有三个channel,它们其中之一作为档案channel。消费者会获取这些消息并且上传到S3。

nsqd

每个channel的消息都会进行排队,直到一个worker把他们消费,如果此队列超出了内存限制,消息将会被写入到磁盘中。Nsqd节点首先会向nsqlookup广播他们的位置信息,一旦它们注册成功,worker将会从nsqlookup服务器节点上发现所有包含事件topic的nsqd节点。

nsqlookupd

2. Internals

2.1 消息传递担保

1)客户表示已经准备好接收消息

2)NSQ 发送一条消息,并暂时将数据存储在本地(在 re-queue 或 timeout)

3)客户端回复 FIN(结束)或 REQ(重新排队)分别指示成功或失败。如果客户端没有回复, NSQ 会在设定的时间超时,自动重新排队消息

这确保了消息丢失唯一可能的情况是不正常结束 nsqd 进程。在这种情况下,这是在内存中的任何信息(或任何缓冲未刷新到磁盘)都将丢失。

如何防止消息丢失是最重要的,即使是这个意外情况可以得到缓解。一种解决方案是构成冗余 nsqd对(在不同的主机上)接收消息的相同部分的副本。因为你实现的消费者是幂等的,以两倍时间处理这些消息不会对下游造成影响,并使得系统能够承受任何单一节点故障而不会丢失信息。

2.2 简化配置和管理

单个 nsqd 实例被设计成可以同时处理多个数据流。流被称为“话题”和话题有 1 个或多个“通道”。每个通道都接收到一个话题中所有消息的拷贝。在实践中,一个通道映射到下行服务消费一个话题。

在更底的层面,每个 nsqd 有一个与 nsqlookupd 的长期 TCP 连接,定期推动其状态。这个数据被 nsqlookupd 用于给消费者通知 nsqd 地址。对于消费者来说,一个暴露的 HTTP /lookup 接口用于轮询。为话题引入一个新的消费者,只需启动一个配置了 nsqlookup 实例地址的 NSQ 客户端。无需为添加任何新的消费者或生产者更改配置,大大降低了开销和复杂性。

2.3 消除单点故障

NSQ被设计以分布的方式被使用。nsqd 客户端(通过 TCP )连接到指定话题的所有生产者实例。没有中间人,没有消息代理,也没有单点故障。

这种拓扑结构消除单链,聚合,反馈。相反,你的消费者直接访问所有生产者。从技术上讲,哪个客户端连接到哪个 NSQ 不重要,只要有足够的消费者连接到所有生产者,以满足大量的消息,保证所有东西最终将被处理。对于 nsqlookupd,高可用性是通过运行多个实例来实现。他们不直接相互通信和数据被认为是最终一致。消费者轮询所有的配置的 nsqlookupd 实例和合并 response。失败的,无法访问的,或以其他方式故障的节点不会让系统陷于停顿。

2.4 效率

对于数据的协议,通过推送数据到客户端最大限度地提高性能和吞吐量的,而不是等待客户端拉数据。这个概念,称之为 RDY 状态,基本上是客户端流量控制的一种形式。

efficiency

2.5 心跳和超时

组合应用级别的心跳和 RDY 状态,避免头阻塞现象,也可能使心跳无用(即,如果消费者是在后面的处理消息流的接收缓冲区中,操作系统将被填满,堵心跳)为了保证进度,所有的网络 IO 时间上限势必与配置的心跳间隔相关联。这意味着,你可以从字面上拔掉之间的网络连接 nsqd 和消费者,它会检测并正确处理错误。当检测到一个致命错误,客户端连接被强制关闭。在传输中的消息会超时而重新排队等待传递到另一个消费者。最后,错误会被记录并累计到各种内部指标。

2.6 分布式

因为NSQ没有在守护程序之间共享信息,所以它从一开始就是为了分布式操作而生。个别的机器可以随便宕机随便启动而不会影响到系统的其余部分,消息发布者可以在本地发布,即使面对网络分区。

这种“分布式优先”的设计理念意味着NSQ基本上可以永远不断地扩展,需要更高的吞吐量?那就添加更多的nsqd吧。唯一的共享状态就是保存在lookup节点上,甚至它们不需要全局视图,配置某些nsqd注册到某些lookup节点上这是很简单的配置,唯一关键的地方就是消费者可以通过lookup节点获取所有完整的节点集。清晰的故障事件——NSQ在组件内建立了一套明确关于可能导致故障的的故障权衡机制,这对消息传递和恢复都有意义。虽然它们可能不像Kafka系统那样提供严格的保证级别,但NSQ简单的操作使故障情况非常明显。

2.7 no replication

不像其他的队列组件,NSQ并没有提供任何形式的复制和集群,也正是这点让它能够如此简单地运行,但它确实对于一些高保证性高可靠性的消息发布没有足够的保证。我们可以通过降低文件同步的时间来部分避免,只需通过一个标志配置,通过EBS支持我们的队列。但是这样仍然存在一个消息被发布后马上死亡,丢失了有效的写入的情况。

2.8 没有严格的顺序

虽然Kafka由一个有序的日志构成,但NSQ不是。消息可以在任何时间以任何顺序进入队列。在我们使用的案例中,这通常没有关系,因为所有的数据都被加上了时间戳,但它并不适合需要严格顺序的情况。

2.9 无数据重复删除功能

NSQ对于超时系统,它使用了心跳检测机制去测试消费者是否存活还是死亡。很多原因会导致我们的consumer无法完成心跳检测,所以在consumer中必须有一个单独的步骤确保幂等性。

3. 实践安装过程

本文将nsq集群具体的安装过程略去,大家可以自行参考官网,比较简单。这部分介绍下笔者实验的拓扑,以及nsqadmin的相关信息。

3.1 拓扑结构

topology

实验采用3台NSQD服务,2台LOOKUPD服务。

采用官方推荐的拓扑,消息发布的服务和NSQD在一台主机。一共5台机器。

NSQ基本没有配置文件,配置通过命令行指定参数。

主要命令如下:

LOOKUPD命令

NSQD命令

工具类,消费后存储到本地文件。

发布一条消息

3.2 nsqadmin

对Streams的详细信息进行查看,包括NSQD节点,具体的channel,队列中的消息数,连接数等信息。

nsqadmin

channel

列出所有的NSQD节点:

nodes

消息的统计:

msgs

lookup主机的列表:

hosts

4. 总结

NSQ基本核心就是简单性,是一个简单的队列,这意味着它很容易进行故障推理和很容易发现bug。消费者可以自行处理故障事件而不会影响系统剩下的其余部分。

事实上,简单性是我们决定使用NSQ的首要因素,这方便与我们的许多其他软件一起维护,通过引入队列使我们得到了堪称完美的表现,通过队列甚至让我们增加了几个数量级的吞吐量。越来越多的consumer需要一套严格可靠性和顺序性保障,这已经超过了NSQ提供的简单功能。

结合我们的业务系统来看,对于我们所需要传输的发票消息,相对比较敏感,无法容忍某个nsqd宕机,或者磁盘无法使用的情况,该节点堆积的消息无法找回。这是我们没有选择该消息中间件的主要原因。简单性和可靠性似乎并不能完全满足。相比Kafka,ops肩负起更多负责的运营。另一方面,它拥有一个可复制的、有序的日志可以提供给我们更好的服务。但对于其他适合NSQ的consumer,它为我们服务的相当好,我们期待着继续巩固它的坚实的基础。

golang之context详解

为什么需要context

在go服务器中,对于每个请求的request都是在单独的goroutine中进行的,处理一个request也可能设计多个goroutine之间的交互, 使用context可以使开发者方便的在这些goroutine里传递request相关的数据、取消goroutine的signal或截止日期

在并发程序中,由于超时、取消操作或者一些异常情况,往往需要进行抢占操作或者中断后续操作。熟悉channel的朋友应该都见过使用done channel来处理此类问题。比如以下这个例子:

上述例子中定义了一个buffer为0的channel done, 子协程运行着定时任务。如果主协程需要在某个时刻发送消息通知子协程中断任务退出,那么就可以让子协程监听这个done channel,一旦主协程关闭done channel,那么子协程就可以推出了,这样就实现了主协程通知子协程的需求。这很好,但是这也是有限的。

如果我们可以在简单的通知上附加传递额外的信息来控制取消:为什么取消,或者有一个它必须要完成的最终期限,更或者有多个取消选项,我们需要根据额外的信息来判断选择执行哪个取消选项。

考虑下面这种情况:假如主协程中有多个任务1, 2, …m,主协程对这些任务有超时控制;而其中任务1又有多个子任务1, 2, …n,任务1对这些子任务也有自己的超时控制,那么这些子任务既要感知主协程的取消信号,也需要感知任务1的取消信号。

如果还是使用done channel的用法,我们需要定义两个done channel,子任务们需要同时监听这两个done channel。嗯,这样其实好像也还行哈。但是如果层级更深,如果这些子任务还有子任务,那么使用done channel的方式将会变得非常繁琐且混乱。

我们需要一种优雅的方案来实现这样一种机制:

上层任务取消后,所有的下层任务都会被取消;中间某一层的任务取消后,只会将当前任务的下层任务取消,而不会影响上层的任务以及同级任务。

这个时候context就派上用场了。我们首先看看context的结构设计和实现原理。

context接口

先看Context接口结构,看起来非常简单。

}

Context接口包含四个方法:

Deadline返回绑定当前context的任务被取消的截止时间;如果没有设定期限,将返回ok == false。

Done 当绑定当前context的任务被取消时,将返回一个关闭的channel;如果当前context不会被取消,将返回nil。

Err 如果Done返回的channel没有关闭,将返回nil;如果Done返回的channel已经关闭,将返回非空的值表示任务结束的原因。如果是context被取消,Err将返回Canceled;如果是context超时,Err将返回DeadlineExceeded。

Value 返回context存储的键值对中当前key对应的值,如果没有对应的key,则返回nil。

可以看到Done方法返回的channel正是用来传递结束信号以抢占并中断当前任务;Deadline方法指示一段时间后当前goroutine是否会被取消;以及一个Err方法,来解释goroutine被取消的原因;而Value则用于获取特定于当前任务树的额外信息。而context所包含的额外信息键值对是如何存储的呢?其实可以想象一颗树,树的每个节点可能携带一组键值对,如果当前节点上无法找到key所对应的值,就会向上去父节点里找,直到根节点。

emptyCtx

emptyCtx是一个int类型的变量,但实现了context的接口。emptyCtx没有超时时间,不能取消,也不能存储任何额外信息,所以emptyCtx用来作为context树的根节点。

Background和TODO只是用于不同场景下: Background通常被用于主函数、初始化以及测试中,作为一个顶层的context,也就是说一般我们创建的context都是基于Background;而TODO是在不确定使用什么context的时候才会使用。

用法 :


当前名称:go语言超时机制 go语言 效率
当前URL:http://cxhlcq.cn/article/doscpei.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部