成都创新互联网站制作重庆分公司

python中插值函数 python字符串插值

双线性插值法原理 python实现

码字不易,如果此文对你有所帮助,请帮忙点赞,感谢!

10多年的朔城网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。成都全网营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整朔城建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联公司从事“朔城网站设计”,“朔城网站推广”以来,每个客户项目都认真落实执行。

一. 双线性插值法原理:

    ① 何为线性插值?

    插值就是在两个数之间插入一个数,线性插值原理图如下:

    ② 各种插值法:

    插值法的第一步都是相同的,计算目标图(dstImage)的坐标点对应原图(srcImage)中哪个坐标点来填充,计算公式为:

    srcX = dstX * (srcWidth/dstWidth)

    srcY = dstY * (srcHeight/dstHeight)

    (dstX,dstY)表示目标图像的某个坐标点,(srcX,srcY)表示与之对应的原图像的坐标点。srcWidth/dstWidth 和 srcHeight/dstHeight 分别表示宽和高的放缩比。

    那么问题来了,通过这个公式算出来的 srcX, scrY 有可能是小数,但是原图像坐标点是不存在小数的,都是整数,得想办法把它转换成整数才行。

不同插值法的区别就体现在 srcX, scrY 是小数时,怎么将其变成整数去取原图像中的像素值。

最近邻插值(Nearest-neighborInterpolation):看名字就很直白,四舍五入选取最接近的整数。这样的做法会导致像素变化不连续,在目标图像中产生锯齿边缘。

双线性插值(Bilinear Interpolation):双线性就是利用与坐标轴平行的两条直线去把小数坐标分解到相邻的四个整数坐标点。权重与距离成反比。

    双三次插值(Bicubic Interpolation):与双线性插值类似,只不过用了相邻的16个点。但是需要注意的是,前面两种方法能保证两个方向的坐标权重和为1,但是双三次插值不能保证这点,所以可能出现像素值越界的情况,需要截断。

    ③ 双线性插值算法原理

假如我们想得到未知函数 f 在点 P = (x, y) 的值,假设我们已知函数 f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四个点的值。最常见的情况,f就是一个像素点的像素值。首先在 x 方向进行线性插值,然后再在 y 方向上进行线性插值,最终得到双线性插值的结果。

④ 举例说明

二. python实现灰度图像双线性插值算法:

灰度图像双线性插值放大缩小

import numpy as np

import math

import cv2

def double_linear(input_signal, zoom_multiples):

'''

双线性插值

:param input_signal: 输入图像

:param zoom_multiples: 放大倍数

:return: 双线性插值后的图像

'''

input_signal_cp = np.copy(input_signal)  # 输入图像的副本

input_row, input_col = input_signal_cp.shape # 输入图像的尺寸(行、列)

# 输出图像的尺寸

output_row = int(input_row * zoom_multiples)

output_col = int(input_col * zoom_multiples)

output_signal = np.zeros((output_row, output_col)) # 输出图片

for i in range(output_row):

    for j in range(output_col):

        # 输出图片中坐标 (i,j)对应至输入图片中的最近的四个点点(x1,y1)(x2, y2),(x3, y3),(x4,y4)的均值

        temp_x = i / output_row * input_row

        temp_y = j / output_col * input_col

        x1 = int(temp_x)

        y1 = int(temp_y)

        x2 = x1

        y2 = y1 + 1

        x3 = x1 + 1

        y3 = y1

        x4 = x1 + 1

        y4 = y1 + 1

        u = temp_x - x1

        v = temp_y - y1

        # 防止越界

        if x4 = input_row:

            x4 = input_row - 1

            x2 = x4

            x1 = x4 - 1

            x3 = x4 - 1

        if y4 = input_col:

            y4 = input_col - 1

            y3 = y4

            y1 = y4 - 1

            y2 = y4 - 1

        # 插值

        output_signal[i, j] = (1-u)*(1-v)*int(input_signal_cp[x1, y1]) + (1-u)*v*int(input_signal_cp[x2, y2]) + u*(1-v)*int(input_signal_cp[x3, y3]) + u*v*int(input_signal_cp[x4, y4])

return output_signal

# Read image

img = cv2.imread("../paojie_g.jpg",0).astype(np.float)

out = double_linear(img,2).astype(np.uint8)

# Save result

cv2.imshow("result", out)

cv2.imwrite("out.jpg", out)

cv2.waitKey(0)

cv2.destroyAllWindows()

三. 灰度图像双线性插值实验结果:

四. 彩色图像双线性插值python实现

def BiLinear_interpolation(img,dstH,dstW):

scrH,scrW,_=img.shape

img=np.pad(img,((0,1),(0,1),(0,0)),'constant')

retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)

for i in range(dstH-1):

    for j in range(dstW-1):

        scrx=(i+1)*(scrH/dstH)

        scry=(j+1)*(scrW/dstW)

        x=math.floor(scrx)

        y=math.floor(scry)

        u=scrx-x

        v=scry-y

        retimg[i,j]=(1-u)*(1-v)*img[x,y]+u*(1-v)*img[x+1,y]+(1-u)*v*img[x,y+1]+u*v*img[x+1,y+1]

return retimg

im_path='../paojie.jpg'

image=np.array(Image.open(im_path))

image2=BiLinear_interpolation(image,image.shape[0]*2,image.shape[1]*2)

image2=Image.fromarray(image2.astype('uint8')).convert('RGB')

image2.save('3.png')

五. 彩色图像双线性插值实验结果:

六. 最近邻插值算法和双三次插值算法可参考:

① 最近邻插值算法:

   

    ② 双三次插值算法:

七. 参考内容:

    

   

python线性插值解析

在缺失值填补上如果用前后的均值填补中间的均值, 比如,0,空,1, 我们希望中间填充0.5;或者0,空,空,1,我们希望中间填充0.33,0.67这样。

可以用pandas的函数进行填充,因为这个就是线性插值法

df..interpolate()

dd=pd.DataFrame(data=[0,np.nan,np.nan,1])

dd.interpolate()

补充知识:线性插值公式简单推导

以上这篇python线性插值解析就是我分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

如何通过python实现三次样条插值

spline函数可以实现三次样条插值 x = 0:10; y = sin(x); xx = 0:.25:10; yy = spline(x,y,xx); plot(x,y,'o',xx,yy) 另外fnplt csapi这两个函数也是三次样条插值函数,具体你可以help一下!

python可否用自定义函数对数据进行插值

直接定义a=True/False就行,示例代码:

#定义布尔值类型参数a,b,值分别为True,False

a=True

b=False

print a,b

print type(a),type(b)

True False

type 'bool' type 'bool'

Python中的布尔类型:

Python的布尔类型有两个值:True和False(注意大小写要区分)

python 拉格朗日插值 不能超过多少个值

拉格朗日插值Python代码实现

1. 数学原理

对某个多项式函数有已知的k+1个点,假设任意两个不同的都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:

其中每个lj(x)为拉格朗日基本多项式(或称插值基函数),其表达式为:

2. 轻量级实现

利用

直接编写程序,可以直接插值,并且得到对应的函数值。但是不能得到系数,也不能对其进行各项运算。

123456789101112

def h(x,y,a):    ans=0.0    for i in range(len(y)):        t=y[i]        for j in range(len(y)):            if i !=j:                t*=(a-x[j])/(x[i]-x[j])        ans +=t    return ansx=[1,0]y=[0,2]print(h(x,y,2))

上述代码中,h(x,y,a)就是插值函数,直接调用就行。参数说明如下:

x,y分别是对应点的x值和y值。具体详解下解释。

a为想要取得的函数的值。

事实上,最简单的拉格朗日插值就是两点式得到的一条直线。

例如:

p点(1,0)q点(0,2)

这两个点决定了一条直线,所以当x=2的时候,y应该是-2

该代码就是利用这两个点插值,然后a作为x=2调用函数验证的。

3. 引用库

3.1 库的安装

主要依赖与 scipy。官方网站见:

安装的方法很简单,就是使用pip install scipy 如果失败,则将whl文件下载到本地再利用命令进行安装。

可能如果没有安装numpy

3.2 库的使用

from scipy.interplotate import lagrange

直接调用lagrange(x,y)这个函数即可,返回 一个对象。

参数x,y分别是对应各个点的x值和y值。

例如:(1,2) (3,5) (5,9)这三个点,作为函数输入应该这么写:

x=[1,3,5]

y =[2, 5, 9]

a=lagrange(x,y)

直接输出该对象,就能看到插值的函数。

利用该对象,能得到很多特性。具体参见:

a.order得到阶

a[]得到系数

a()得到对应函数值

此外可以对其进行加减乘除运算

3.3 代码实现

1234567   from scipy.interpolate import lagrangex=[1,2,3,4,7]y=[5,7,10,3,9]a=lagrange(x,y)print(a)print(a(1),a(2),a(3))print(a[0],a[2],a[3])   

结果是:

class 'numpy.lib.polynomial.poly1d' 4

4            3              2

0.5472 x - 7.306 x + 30.65 x - 47.03 x + 28.13

5.0 7.0 10.0

28.1333333333 30.6527777778 -7.30555555556

解释:

class 'numpy.lib.polynomial.poly1d' 4

这一行是输出a的类型,以及最高次幂。

4            3              2

0.5472 x - 7.306 x + 30.65 x - 47.03 x + 28.13

第二行和第三行就是插值的结果,显示出的函数。

第二行的数字是对应下午的x的幂,如果对应不齐,则是排版问题。

5.0 7.0 10.0

第四行是代入的x值,得到的结果。

也就是说,用小括号f(x)的这种形式,可以直接得到计算结果。

28.1333333333 30.6527777778 -7.30555555556

图像双三次插值算法原理及python实现

一. 图像双三次插值算法原理:

假设源图像 A 大小为 m*n ,缩放后的目标图像 B 的大小为 M*N 。那么根据比例我们可以得到 B(X,Y) 在 A 上的对应坐标为 A(x,y) = A( X*(m/M), Y*(n/N) ) 。在双线性插值法中,我们选取 A(x,y) 的最近四个点。而在双立方插值法中,我们选取的是最近的16个像素点作为计算目标图像 B(X,Y) 处像素值的参数。如图所示:

如图所示 P 点就是目标图像 B 在 (X,Y) 处对应于源图像中的位置,P 的坐标位置会出现小数部分,所以我们假设 P 的坐标为 P(x+u,y+v),其中 x,y 分别表示整数部分,u,v 分别表示小数部分。那么我们就可以得到如图所示的最近 16 个像素的位置,在这里用 a(i,j)(i,j=0,1,2,3) 来表示。 

双立方插值的目的就是通过找到一种关系,或者说系数,可以把这 16 个像素对于 P 处像素值的影响因子找出来,从而根据这个影响因子来获得目标图像对应点的像素值,达到图像缩放的目的。 

    BiCubic基函数形式如下:

二. python实现双三次插值算法

from PIL import Image

import numpy as np

import math

# 产生16个像素点不同的权重

def BiBubic(x):

x=abs(x)

if x=1:

    return 1-2*(x**2)+(x**3)

elif x2:

    return 4-8*x+5*(x**2)-(x**3)

else:

    return 0

# 双三次插值算法

# dstH为目标图像的高,dstW为目标图像的宽

def BiCubic_interpolation(img,dstH,dstW):

scrH,scrW,_=img.shape

#img=np.pad(img,((1,3),(1,3),(0,0)),'constant')

retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)

for i in range(dstH):

    for j in range(dstW):

        scrx=i*(scrH/dstH)

        scry=j*(scrW/dstW)

        x=math.floor(scrx)

        y=math.floor(scry)

        u=scrx-x

        v=scry-y

        tmp=0

        for ii in range(-1,2):

            for jj in range(-1,2):

                if x+ii0 or y+jj0 or x+ii=scrH or y+jj=scrW:

                    continue

                tmp+=img[x+ii,y+jj]*BiBubic(ii-u)*BiBubic(jj-v)

        retimg[i,j]=np.clip(tmp,0,255)

return retimg

im_path='../paojie.jpg'

image=np.array(Image.open(im_path))

image2=BiCubic_interpolation(image,image.shape[0]*2,image.shape[1]*2)

image2=Image.fromarray(image2.astype('uint8')).convert('RGB')

image2.save('BiCubic_interpolation.jpg')

三. 实验结果:

四. 参考内容:

   

   


当前文章:python中插值函数 python字符串插值
文章来源:http://cxhlcq.cn/article/docojhd.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部