成都创新互联网站制作重庆分公司

哈夫曼编码运用到了什么数据结构-创新互联

这篇文章将为大家详细讲解有关哈夫曼编码运用到了什么数据结构,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

为措勤等地区用户提供了全套网页设计制作服务,及措勤网站建设行业解决方案。主营业务为成都网站设计、做网站、措勤网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!

哈夫曼编码运用到的数据结构为“树型结构”。在哈夫曼算法的支持下构造出一棵最优二叉树,我们把这类树命名为哈夫曼树。因此,准确地说,哈夫曼编码是在哈夫曼树的基础之上构造出来的一种编码形式。

哈夫曼编码运用到的数据结构为“树型结构”。

哈夫曼编码(Huffman Coding),又称霍夫曼编码,是一种编码方式,哈夫曼编码是可变字长编码(VLC)的一种。Huffman于1952年提出一种编码方法,该方法完全依据字符出现概率来构造异字头的平均长度短的码字,有时称之为很好编码,一般就叫做Huffman编码(有时也称为霍夫曼编码)。

哈夫曼编码借助了数据结构当中的树型结构,在哈夫曼算法的支持下构造出一棵最优二叉树,我们把这类树命名为哈夫曼树。因此,准确地说,哈夫曼编码是在哈夫曼树的基础之上构造出来的一种编码形式,它的本身有着非常广泛的应用。

哈夫曼树

给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度短的树,权值较大的结点离根较近。

所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数)。树的路径长度是从树根到每一结点的路径长度之和,记为WPL=(W1*L1+W2*L2+W3*L3+...+Wn*Ln),N个权值Wi(i=1,2,...n)构成一棵有N个叶结点的二叉树,相应的叶结点的路径长度为Li(i=1,2,...n)。可以证明哈夫曼树的WPL是最小的。

关于“哈夫曼编码运用到了什么数据结构”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。


当前题目:哈夫曼编码运用到了什么数据结构-创新互联
网站网址:http://cxhlcq.cn/article/coiece.html

其他资讯

在线咨询

微信咨询

电话咨询

028-86922220(工作日)

18980820575(7×24)

提交需求

返回顶部